Suppr超能文献

番茄角质缺陷1(CD1)及其假定的直系同源物构成了一个古老的类角质合成酶(CUS)蛋白家族,该家族在陆地植物中保守。

Tomato Cutin Deficient 1 (CD1) and putative orthologs comprise an ancient family of cutin synthase-like (CUS) proteins that are conserved among land plants.

作者信息

Yeats Trevor H, Huang Wenlin, Chatterjee Subhasish, Viart Hélène M-F, Clausen Mads H, Stark Ruth E, Rose Jocelyn K C

机构信息

Department of Plant Biology, Cornell University, Ithaca, NY, 14853, USA.

出版信息

Plant J. 2014 Mar;77(5):667-75. doi: 10.1111/tpj.12422. Epub 2014 Feb 11.

Abstract

The aerial epidermis of all land plants is covered with a hydrophobic cuticle that provides essential protection from desiccation, and so its evolution is believed to have been prerequisite for terrestrial colonization. A major structural component of apparently all plant cuticles is cutin, a polyester of hydroxy fatty acids; however, despite its ubiquity, the details of cutin polymeric structure and the mechanisms of its formation and remodeling are not well understood. We recently reported that cutin polymerization in tomato (Solanum lycopersicum) fruit occurs via transesterification of hydroxyacylglycerol precursors, catalyzed by the GDSL-motif lipase/hydrolase family protein (GDSL) Cutin Deficient 1 (CD1). Here, we present additional biochemical characterization of CD1 and putative orthologs from Arabidopsis thaliana and the moss Physcomitrella patens, which represent a distinct clade of cutin synthases within the large GDSL superfamily. We demonstrate that members of this ancient and conserved family of cutin synthase-like (CUS) proteins act as polyester synthases with negligible hydrolytic activity. Moreover, solution-state NMR analysis indicates that CD1 catalyzes the formation of primarily linear cutin oligomeric products in vitro. These results reveal a conserved mechanism of cutin polyester synthesis in land plants, and suggest that elaborations of the linear polymer, such as branching or cross-linking, may require additional, as yet unknown, factors.

摘要

所有陆地植物的气生表皮都覆盖着一层疏水性角质层,该角质层提供了防止脱水的重要保护作用,因此其进化被认为是陆地定殖的先决条件。显然,所有植物角质层的一个主要结构成分是角质,它是一种羟基脂肪酸的聚酯;然而,尽管角质普遍存在,但其聚合物结构的细节以及形成和重塑机制仍未得到很好的理解。我们最近报道,番茄(Solanum lycopersicum)果实中的角质聚合是通过羟基酰基甘油前体的酯交换反应发生的,由GDSL基序脂肪酶/水解酶家族蛋白(GDSL)角质缺陷1(CD1)催化。在这里,我们展示了来自拟南芥和苔藓小立碗藓的CD1及其假定直系同源物的额外生化特性,它们代表了大GDSL超家族中一个独特的角质合成酶进化枝。我们证明,这个古老且保守的类角质合成酶(CUS)蛋白家族的成员作为聚酯合成酶,水解活性可忽略不计。此外,溶液态核磁共振分析表明,CD1在体外催化主要线性角质寡聚产物的形成。这些结果揭示了陆地植物中角质聚酯合成的保守机制,并表明线性聚合物的细化,如分支或交联,可能需要额外的、尚未知的因素。

相似文献

3
Tomato GDSL1 is required for cutin deposition in the fruit cuticle.
Plant Cell. 2012 Jul;24(7):3119-34. doi: 10.1105/tpc.112.101055. Epub 2012 Jul 17.
4
The identification of cutin synthase: formation of the plant polyester cutin.
Nat Chem Biol. 2012 Jul;8(7):609-11. doi: 10.1038/nchembio.960. Epub 2012 May 20.
7
Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis.
J Exp Bot. 2010 Aug;61(13):3759-71. doi: 10.1093/jxb/erq194. Epub 2010 Jun 21.
9
Cutinsomes and CUTIN SYNTHASE1 Function Sequentially in Tomato Fruit Cutin Deposition.
Plant Physiol. 2020 Aug;183(4):1622-1637. doi: 10.1104/pp.20.00516. Epub 2020 May 26.
10
Assembly of tomato fruit cuticles: a cross-talk between the cutin polyester and cell wall polysaccharides.
New Phytol. 2020 May;226(3):809-822. doi: 10.1111/nph.16402. Epub 2020 Feb 10.

引用本文的文献

1
Exploring the sheen: a review of research advances on fruit glossiness.
Front Plant Sci. 2025 Jul 2;16:1629039. doi: 10.3389/fpls.2025.1629039. eCollection 2025.
4
Exploring the plant lipidome: techniques, challenges, and prospects.
Adv Biotechnol (Singap). 2024 Mar 11;2(1):11. doi: 10.1007/s44307-024-00017-9.
5
The evolution of plant responses underlying specialized metabolism in host-pathogen interactions.
Philos Trans R Soc Lond B Biol Sci. 2024 Nov 18;379(1914):20230370. doi: 10.1098/rstb.2023.0370. Epub 2024 Sep 30.
7
Evolution and development of fruits of Erycina pusilla and other orchid species.
PLoS One. 2023 Oct 10;18(10):e0286846. doi: 10.1371/journal.pone.0286846. eCollection 2023.
8
Microscopic and metabolic investigations disclose the factors that lead to skin cracking in chili-type pepper fruit varieties.
Hortic Res. 2023 Feb 28;10(4):uhad036. doi: 10.1093/hr/uhad036. eCollection 2023 Apr.
9
GDSL Esterase/Lipase GELP1 Involved in the Defense of Apple Leaves against Infection.
Int J Mol Sci. 2023 Jun 19;24(12):10343. doi: 10.3390/ijms241210343.
10
Genome-wide analysis of the GDSL esterase/lipase family genes in Physcomitrium patens and the involvement of GELP31 in spore germination.
Mol Genet Genomics. 2023 Sep;298(5):1155-1172. doi: 10.1007/s00438-023-02041-1. Epub 2023 Jun 20.

本文引用的文献

2
The formation and function of plant cuticles.
Plant Physiol. 2013 Sep;163(1):5-20. doi: 10.1104/pp.113.222737. Epub 2013 Jul 26.
4
Tomato GDSL1 is required for cutin deposition in the fruit cuticle.
Plant Cell. 2012 Jul;24(7):3119-34. doi: 10.1105/tpc.112.101055. Epub 2012 Jul 17.
5
The identification of cutin synthase: formation of the plant polyester cutin.
Nat Chem Biol. 2012 Jul;8(7):609-11. doi: 10.1038/nchembio.960. Epub 2012 May 20.
6
Solving the puzzles of cutin and suberin polymer biosynthesis.
Curr Opin Plant Biol. 2012 Jun;15(3):329-37. doi: 10.1016/j.pbi.2012.03.003. Epub 2012 Mar 30.
7
SHINE transcription factors act redundantly to pattern the archetypal surface of Arabidopsis flower organs.
PLoS Genet. 2011 May;7(5):e1001388. doi: 10.1371/journal.pgen.1001388. Epub 2011 May 26.
8
Different active-site loop orientation in serine hydrolases versus acyltransferases.
Chembiochem. 2011 Mar 21;12(5):768-76. doi: 10.1002/cbic.201000693. Epub 2011 Feb 23.
9
Linear and branched poly(omega-hydroxyacid) esters in plant cutins.
J Agric Food Chem. 2010 Sep 8;58(17):9666-74. doi: 10.1021/jf1015297.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验