Suppr超能文献

应用极值统计检测儿童癫痫发作中的罕见事件。

Detecting rare events using extreme value statistics applied to epileptic convulsions in children.

机构信息

Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium.

Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium; iMinds Future Health Department, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium.

出版信息

Artif Intell Med. 2014 Feb;60(2):89-96. doi: 10.1016/j.artmed.2013.11.007. Epub 2013 Dec 10.

Abstract

OBJECTIVE

Nocturnal home monitoring of epileptic children is often not feasible due to the cumbersome manner of seizure detection with the standard method of video electroencephalography monitoring. The goal of this paper is to propose a method for hypermotor seizure detection based on accelerometers that are attached to the extremities.

METHODS

Supervised methods that are commonly used in literature need annotation of data and hence require expert (neurologist) interaction resulting in a substantial cost. In this paper an unsupervised method is proposed that uses extreme value statistics and seizure detection based on a model of normal behavior that is estimated using all recorded and unlabeled data. In this way the expensive interaction can be avoided.

RESULTS

When applying this method to a labeled dataset, acquired from 7 patients, all hypermotor seizures are detected in 5 of the 7 patients with an average positive predictive value (PPV) of 53%. For evaluating the performance on an unlabeled dataset, seizure events are presented to the system as normal movement events. Since hypermotor seizures are rare compared to normal movements, the very few abnormal events have a negligible effect on the quality of the model. In this way, it was possible to evaluate the system for 3 of the 7 patients when 3% of the training set was composed of seizure events. This resulted in sensitivity scores of 80%, 22% and 90% and a PPV of 89%, 21% and 44% respectively. These scores are comparable with a state-of-the-art supervised machine learning based approach which requires a labeled dataset.

CONCLUSIONS

A person-dependent epileptic seizure detection method has been designed that requires little human interaction. In contrast to traditional machine learning approaches, the imbalance of the dataset does not cause substantial difficulties.

摘要

目的

由于使用标准视频脑电图监测方法检测癫痫发作的方式繁琐,因此,对癫痫儿童进行夜间家庭监测往往不可行。本文旨在提出一种基于附着在四肢上的加速度计的多动性发作检测方法。

方法

文献中常用的监督方法需要对数据进行注释,因此需要专家(神经科医生)的交互,从而导致成本大幅增加。本文提出了一种无监督方法,该方法使用极值统计和基于使用所有记录和未标记数据估计的正常行为模型的发作检测。通过这种方式,可以避免昂贵的交互。

结果

当将该方法应用于从 7 名患者中获得的标记数据集时,在 7 名患者中的 5 名患者中检测到所有多动性发作,平均阳性预测值(PPV)为 53%。为了在未标记数据集上评估性能,将发作事件作为正常运动事件呈现给系统。由于与正常运动相比,多动性发作很少见,因此很少有异常事件对模型质量的影响可以忽略不计。通过这种方式,当训练集的 3%由发作事件组成时,可以对 7 名患者中的 3 名患者进行系统评估。这导致敏感性评分分别为 80%、22%和 90%,阳性预测值分别为 89%、21%和 44%。这些分数与需要标记数据集的基于最先进的监督机器学习方法相当。

结论

已经设计了一种需要很少人为交互的个体依赖性癫痫发作检测方法。与传统的机器学习方法相比,数据集的不平衡不会造成实质性困难。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验