Technical University of Denmark, Department of Electrical Engineering, Building 349, Oersteds Plads, 2800 Kgs. Lyngby, Denmark.
Clin Neurophysiol. 2012 Jan;123(1):84-92. doi: 10.1016/j.clinph.2011.06.001. Epub 2011 Jul 12.
To investigate the performance of epileptic seizure detection using only a few of the recorded EEG channels and the ability of software to select these channels compared with a neurophysiologist.
Fifty-nine seizures and 1419 h of interictal EEG are used for training and testing of an automatic channel selection method. The characteristics of the seizures are extracted by the use of a wavelet analysis and classified by a support vector machine. The best channel selection method is based upon maximum variance during the seizure.
Using only three channels, a seizure detection sensitivity of 96% and a false detection rate of 0.14/h were obtained. This corresponds to the performance obtained when channels are selected through visual inspection by a clinical neurophysiologist, and constitutes a 4% improvement in sensitivity compared to seizure detection using channels recorded directly on the epileptic focus.
Based on our dataset, automatic seizure detection can be done using only three EEG channels without loss of performance. These channels should be selected based on maximum variance and not, as often done, using the focal channels.
With this simple automatic channel selection method, we have shown a computational efficient way of making automatic seizure detection.
研究仅使用少数记录的 EEG 通道进行癫痫发作检测的性能,以及软件与神经生理学家相比选择这些通道的能力。
使用 59 次癫痫发作和 1419 小时的间发性 EEG 来训练和测试自动通道选择方法。使用小波分析提取癫痫发作的特征,并通过支持向量机进行分类。最佳的通道选择方法基于癫痫发作期间的最大方差。
仅使用三个通道,获得了 96%的癫痫发作检测灵敏度和 0.14/h 的假阳性率。这与临床神经生理学家通过视觉检查选择通道时获得的性能相对应,与使用直接记录在癫痫灶上的通道进行癫痫发作检测相比,灵敏度提高了 4%。
基于我们的数据集,无需性能损失即可仅使用三个 EEG 通道进行自动癫痫发作检测。这些通道应基于最大方差进行选择,而不是像通常那样使用焦点通道。
通过这种简单的自动通道选择方法,我们展示了一种计算效率高的自动癫痫发作检测方法。