Suppr超能文献

功能性近红外光谱(fNIRS)可提高多模态 EEG-fNIRS 记录中的癫痫发作检测。

fNIRS improves seizure detection in multimodal EEG-fNIRS recordings.

机构信息

Université de Montréal, École Polytechnique de Montréal, Montréal, Québec, Canada.

Neurology Division, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.

出版信息

J Biomed Opt. 2019 Feb;24(5):1-9. doi: 10.1117/1.JBO.24.5.051408.

Abstract

In the context of epilepsy monitoring, electroencephalography (EEG) remains the modality of choice. Functional near-infrared spectroscopy (fNIRS) is a relatively innovative modality that cannot only characterize hemodynamic profiles of seizures but also allow for long-term recordings. We employ deep learning methods to investigate the benefits of integrating fNIRS measures for seizure detection. We designed a deep recurrent neural network with long short-term memory units and subsequently validated it using the CHBMIT scalp EEG database-a compendium of 896 h of surface EEG seizure recordings. After validating our network using EEG, fNIRS, and multimodal data comprising a corpus of 89 seizures from 40 refractory epileptic patients was used as model input to evaluate the integration of fNIRS measures. Following heuristic hyperparameter optimization, multimodal EEG-fNIRS data provide superior performance metrics (sensitivity and specificity of 89.7% and 95.5%, respectively) in a seizure detection task, with low generalization errors and loss. False detection rates are generally low, with 11.8% and 5.6% for EEG and multimodal data, respectively. Employing multimodal neuroimaging, particularly EEG-fNIRS, in epileptic patients, can enhance seizure detection performance. Furthermore, the neural network model proposed and characterized herein offers a promising framework for future multimodal investigations in seizure detection and prediction.

摘要

在癫痫监测中,脑电图(EEG)仍然是首选的模式。功能近红外光谱(fNIRS)是一种相对较新的模式,不仅可以描述癫痫发作的血液动力学特征,还可以进行长期记录。我们采用深度学习方法来研究整合 fNIRS 测量值对癫痫发作检测的益处。我们设计了一个具有长短期记忆单元的深度递归神经网络,然后使用 CHBMIT 头皮 EEG 数据库(包含 896 小时的表面 EEG 癫痫发作记录的汇编)对其进行验证。在使用 EEG、fNIRS 和包含 40 名难治性癫痫患者 89 次癫痫发作的多模态数据对网络进行验证后,将 fNIRS 测量值的整合作为模型输入,以评估其性能。经过启发式超参数优化后,多模态 EEG-fNIRS 数据在癫痫发作检测任务中提供了更高的性能指标(敏感性和特异性分别为 89.7%和 95.5%),具有较低的泛化误差和损失。假阳性率通常较低,EEG 和多模态数据分别为 11.8%和 5.6%。在癫痫患者中使用多模态神经影像学,特别是 EEG-fNIRS,可以提高癫痫发作检测的性能。此外,本文提出并描述的神经网络模型为未来的癫痫发作检测和预测的多模态研究提供了一个有前途的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f65/6992892/63c0f3a6c072/JBO-024-051408-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验