Krüger E L, Minella F O, Matzarakis A
Federal Technological University of Parana, Av. Sete de Setembro, 3165, 80230-901, Curitiba, PR, Brazil,
Int J Biometeorol. 2014 Oct;58(8):1727-37. doi: 10.1007/s00484-013-0777-1. Epub 2013 Dec 28.
Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature T(mrt) are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine T(mrt) is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine T(mrt) is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature T(mrt) in terms of differences to a reference condition (T(mrt) calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The T(mrt) obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for T(mrt) calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate T(mrt) when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation data measured at the urban site or as a surrogate of missing SR data or globe temperature data recorded at the urban area on global radiation data measured at a rural location.
由于室外热指数与计算或测量的平均辐射温度T(mrt)之间的相关性对室外空间中人体能量平衡有综合影响,所以通常具有高度重要性。确定T(mrt)最准确的方法是通过积分辐射测量,即使用总辐射表和净辐射表从六个方向测量短波和长波辐射,这是一种昂贵且并非总能轻易实现的方法。一些研究使用黑球温度计结合气温和风速传感器。另一种确定T(mrt)的方法是基于RayMan模型的输出,该模型依据测得的全球辐射数据以及监测地点的形态特征,特别是天空视角因子(SVF)数据。本文的目的是比较不同方法评估平均辐射温度T(mrt)时与参考条件(根据现场测量计算得出的T(mrt))的差异,以及由此得出的以PET和UTCI值表示的室外舒适度水平。根据英国格拉斯哥收集的数据,按照ISO 7726的强制通风公式,现场测量获得的T(mrt)是气温、风速和黑球温度数据的组合。在RayMan模型中,使用了四种不同方法计算T(mrt):输入数据仅由在城市地点测量的数据组成;城市数据不包括太阳辐射、估计的SVF数据以及在农村地点测量的太阳辐射数据;城市数据不包括太阳辐射,每个地点使用SVF数据;城市数据不包括太阳辐射,但包括农村地点的太阳辐射,不考虑SVF信息。结果表明,与ISO计算结果相比,所有方法都高估了T(mrt)。发现第一种方法的相关性显著,其他三种方法的相关性较低。就舒适度(PET、UTCI)而言,结果表明,可以根据在城市地点测量的全球辐射数据,或者作为缺失的太阳辐射数据或城市地区记录的黑球温度数据的替代数据,即农村地点测量的全球辐射数据,做出合理估计。