Suppr超能文献

配体构象能在糖缀合物对接中的重要性:去芜存菁。

Importance of ligand conformational energies in carbohydrate docking: Sorting the wheat from the chaff.

机构信息

Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, Georgia, 30606.

出版信息

J Comput Chem. 2014 Mar 15;35(7):526-39. doi: 10.1002/jcc.23517. Epub 2013 Dec 29.

Abstract

Docking algorithms that aim to be applicable to a broad range of ligands suffer reduced accuracy because they are unable to incorporate ligand-specific conformational energies. Here, we develop a set of Carbohydrate Intrinsic (CHI) energy functions that quantify the conformational properties of oligosaccharides, based on the values of their glycosidic torsion angles. The relative energies predicted by the CHI energy functions mirror the conformational distributions of glycosidic linkages determined from a survey of oligosaccharide-protein complexes in the protein data bank. Addition of CHI energies to the standard docking scores in Autodock 3, 4.2, and Vina consistently improves pose ranking of oligosaccharides docked to a set of anticarbohydrate antibodies. The CHI energy functions are also independent of docking algorithm, and with minor modifications, may be incorporated into both theoretical modeling methods, and experimental NMR or X-ray structure refinement programs.

摘要

旨在适用于广泛配体的对接算法由于无法纳入配体特异性构象能而降低了准确性。在这里,我们开发了一组基于糖苷扭转角值的碳水化合物固有(CHI)能量函数,用于量化寡糖的构象性质。CHI 能量函数预测的相对能量反映了从蛋白质数据库中寡糖-蛋白质复合物调查中确定的糖苷键的构象分布。将 CHI 能量添加到 Autodock 3、4.2 和 Vina 的标准对接分数中,一致地改善了与一组抗碳水化合物抗体对接的寡糖的构象排名。CHI 能量函数也与对接算法无关,并且经过微小修改,可以纳入理论建模方法以及实验 NMR 或 X 射线结构精修程序中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f06/3936473/626df6a8bdc5/nihms549434f1.jpg

相似文献

2
Vina-Carb: Improving Glycosidic Angles during Carbohydrate Docking.维纳 - 卡布:改善碳水化合物对接过程中的糖苷角。
J Chem Theory Comput. 2016 Feb 9;12(2):892-901. doi: 10.1021/acs.jctc.5b00834. Epub 2016 Jan 19.
9
GlycoTorch Vina: Docking Designed and Tested for Glycosaminoglycans.GlycoTorch Vina:专为糖胺聚糖设计和测试的对接。
J Chem Inf Model. 2020 Dec 28;60(12):6328-6343. doi: 10.1021/acs.jcim.0c00373. Epub 2020 Nov 5.

引用本文的文献

2
Generating 3D Models of Carbohydrates with GLYCAM-Web.使用GLYCAM-Web生成碳水化合物的3D模型。
bioRxiv. 2025 May 9:2025.05.08.652828. doi: 10.1101/2025.05.08.652828.
3
Activity-Based Tracking of Glycan Turnover in Microbiomes.基于活性的微生物群落中聚糖周转追踪
J Am Chem Soc. 2025 Jul 23;147(29):25799-25805. doi: 10.1021/jacs.5c07546. Epub 2025 Jul 8.
4
Computational toolbox for the analysis of protein-glycan interactions.用于分析蛋白质-聚糖相互作用的计算工具箱。
Beilstein J Org Chem. 2024 Aug 22;20:2084-2107. doi: 10.3762/bjoc.20.180. eCollection 2024.

本文引用的文献

1
Carbohydrate force fields.碳水化合物力场
Wiley Interdiscip Rev Comput Mol Sci. 2012 Jul;2(4):652-697. doi: 10.1002/wcms.89.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验