Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, Georgia, 30606.
J Comput Chem. 2014 Mar 15;35(7):526-39. doi: 10.1002/jcc.23517. Epub 2013 Dec 29.
Docking algorithms that aim to be applicable to a broad range of ligands suffer reduced accuracy because they are unable to incorporate ligand-specific conformational energies. Here, we develop a set of Carbohydrate Intrinsic (CHI) energy functions that quantify the conformational properties of oligosaccharides, based on the values of their glycosidic torsion angles. The relative energies predicted by the CHI energy functions mirror the conformational distributions of glycosidic linkages determined from a survey of oligosaccharide-protein complexes in the protein data bank. Addition of CHI energies to the standard docking scores in Autodock 3, 4.2, and Vina consistently improves pose ranking of oligosaccharides docked to a set of anticarbohydrate antibodies. The CHI energy functions are also independent of docking algorithm, and with minor modifications, may be incorporated into both theoretical modeling methods, and experimental NMR or X-ray structure refinement programs.
旨在适用于广泛配体的对接算法由于无法纳入配体特异性构象能而降低了准确性。在这里,我们开发了一组基于糖苷扭转角值的碳水化合物固有(CHI)能量函数,用于量化寡糖的构象性质。CHI 能量函数预测的相对能量反映了从蛋白质数据库中寡糖-蛋白质复合物调查中确定的糖苷键的构象分布。将 CHI 能量添加到 Autodock 3、4.2 和 Vina 的标准对接分数中,一致地改善了与一组抗碳水化合物抗体对接的寡糖的构象排名。CHI 能量函数也与对接算法无关,并且经过微小修改,可以纳入理论建模方法以及实验 NMR 或 X 射线结构精修程序中。