Suppr超能文献

用于革兰氏阴性菌中肽聚糖靶向抗生素筛选的全细胞生物传感器的开发。

Development of Whole-Cell Biosensors for Screening of Peptidoglycan-Targeting Antibiotics in a Gram-Negative Bacterium.

机构信息

College of Biotechnology and Bioengineering, Zhejiang University of Technologygrid.469325.f, Hangzhou, China.

出版信息

Appl Environ Microbiol. 2022 Sep 22;88(18):e0084622. doi: 10.1128/aem.00846-22. Epub 2022 Aug 30.

Abstract

There is an urgent need to develop novel antibiotics since antibiotic resistance is an increasingly serious threat to global public health. Whole-cell biosensors are one of the promising strategies for new antibiotic discovery. The peptidoglycan (PG) of the bacterial cell wall is one of the most important targets for antibiotics. However, the biosensors for the detection of PG-targeting antibiotics in Gram-negative bacteria have not been developed, mainly because of the lack of the regulatory systems that sense and respond to PG stress. Recently, we identified a novel two-component signal transduction system (PghKR) that is responsible for sensing and responding to PG damage in the Gram-negative bacterium Shewanella oneidensis. Based on this system, we developed biosensors for the detection of PG-targeting antibiotics. Using ampicillin as an inducer for PG stress and the bacterial luciferase LuxCDABE as the reporter, we found that the PghKR biosensors are specific to antibiotics targeting PG synthesis, including β-lactams, vancomycin, and d-cycloserine. Deletion of genes encoding PG permease AmpG and β-lactamase BlaA improves the sensitivity of the biosensors substantially. The PghKR biosensor in the background of Δ is also functional on agar plates, providing a simple method for screening bacteria that produce PG-targeting antibiotics. The growing problem of antibiotic resistance in Gram-negative bacteria urgently needs new strategies so that researchers can develop novel antibiotics. Microbial whole-cell biosensors are capable of sensing various stimuli with a quantifiable output and show tremendous potential for the discovery of novel antibiotics. As the Achilles' heel of bacteria, the synthesis of the peptidoglycan (PG) is targeted by many antibiotics. However, the regulatory systems that sense and respond to PG-targeting stress in Gram-negative bacteria are reported rarely, restricting the development of biosensors for the detection of PG-targeting antibiotics. In this study, we developed a highly sensitive and specific biosensor based on a novel two-component system in the Gram-negative bacterium Shewanella oneidensis that is responsible for the sensing and responding to PG stress. Our biosensors have great potential for discovering novel antibiotics and determining the mode of action of antibiotics.

摘要

由于抗生素耐药性对全球公共健康构成日益严重的威胁,因此迫切需要开发新型抗生素。全细胞生物传感器是新抗生素发现的一种很有前途的策略。细菌细胞壁的肽聚糖 (PG) 是抗生素的最重要靶标之一。然而,革兰氏阴性菌中用于检测 PG 靶向抗生素的生物传感器尚未开发,主要是因为缺乏感应和响应 PG 应激的调节系统。最近,我们鉴定了一种新型的双组分信号转导系统(PghKR),该系统负责感应和响应革兰氏阴性菌希瓦氏菌 Shewanella oneidensis 中的 PG 损伤。基于该系统,我们开发了用于检测 PG 靶向抗生素的生物传感器。我们使用氨苄青霉素作为 PG 应激诱导物,并用细菌荧光素酶 LuxCDABE 作为报告基因,发现 PghKR 生物传感器特异性地检测到靶向 PG 合成的抗生素,包括β-内酰胺类抗生素、万古霉素和 D-环丝氨酸。缺失编码 PG 通透酶 AmpG 和β-内酰胺酶 BlaA 的基因可显著提高生物传感器的灵敏度。在 Δ 背景下的 PghKR 生物传感器在琼脂平板上也具有功能,为筛选产生 PG 靶向抗生素的细菌提供了一种简单的方法。革兰氏阴性菌中抗生素耐药性日益严重的问题迫切需要新的策略,以便研究人员能够开发新型抗生素。微生物全细胞生物传感器能够感应各种刺激并产生可量化的输出,在新型抗生素的发现方面具有巨大潜力。作为细菌的阿喀琉斯之踵,肽聚糖 (PG) 的合成是许多抗生素的靶标。然而,感应和响应革兰氏阴性菌中 PG 靶向应激的调节系统很少有报道,这限制了用于检测 PG 靶向抗生素的生物传感器的开发。在这项研究中,我们在革兰氏阴性菌希瓦氏菌 Shewanella oneidensis 中开发了一种基于新型双组分系统的高度敏感和特异的生物传感器,该系统负责感应和响应 PG 应激。我们的生物传感器在发现新型抗生素和确定抗生素作用模式方面具有很大的潜力。

相似文献

1
Development of Whole-Cell Biosensors for Screening of Peptidoglycan-Targeting Antibiotics in a Gram-Negative Bacterium.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0084622. doi: 10.1128/aem.00846-22. Epub 2022 Aug 30.
2
Distinct roles of major peptidoglycan recycling enzymes in β-Lactamase production in Shewanella oneidensis.
Antimicrob Agents Chemother. 2014 Nov;58(11):6536-43. doi: 10.1128/AAC.03238-14. Epub 2014 Aug 18.
3
PBP1a/LpoA but not PBP1b/LpoB are involved in regulation of the major β-lactamase gene blaA in Shewanella oneidensis.
Antimicrob Agents Chemother. 2015;59(6):3357-64. doi: 10.1128/AAC.04669-14. Epub 2015 Mar 30.
4
[Progress in regulatory mechanism for inducing β-lactamase in Gram-negative bacteria].
Sheng Wu Gong Cheng Xue Bao. 2018 Aug 25;34(8):1288-1296. doi: 10.13345/j.cjb.180187.
5
Divergent Effects of Peptidoglycan Carboxypeptidase DacA on Intrinsic β-Lactam and Vancomycin Resistance.
Microbiol Spectr. 2022 Aug 31;10(4):e0173422. doi: 10.1128/spectrum.01734-22. Epub 2022 Jun 27.
7
Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.
Drug Resist Updat. 2016 Sep;28:91-104. doi: 10.1016/j.drup.2016.07.002. Epub 2016 Jul 29.
8
Bacterial cell-wall recycling.
Ann N Y Acad Sci. 2013 Jan;1277(1):54-75. doi: 10.1111/j.1749-6632.2012.06813.x. Epub 2012 Nov 16.
9
Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance.
PLoS Pathog. 2015 May 7;11(5):e1004891. doi: 10.1371/journal.ppat.1004891. eCollection 2015 May.
10
Molecular Modeling and Simulation of the Peptidoglycan Layer of Gram-Positive Bacteria .
J Chem Inf Model. 2022 Oct 24;62(20):4955-4962. doi: 10.1021/acs.jcim.2c00437. Epub 2022 Aug 18.

引用本文的文献

2
Biosensor-aided isolation of anaerobic arsenic-methylating bacteria from soil.
ISME Commun. 2025 May 9;5(1):ycaf081. doi: 10.1093/ismeco/ycaf081. eCollection 2025 Jan.
3
Next-Gen Nano Biosensor Technologies to Monitor Carbapenem Resistance for Personalized Medicine.
Indian J Microbiol. 2025 Mar;65(1):277-296. doi: 10.1007/s12088-024-01337-z. Epub 2024 Jun 20.
4
Engineering Whole-Cell Biosensors for Enhanced Detection of Environmental Antibiotics Using a Synthetic Biology Approach.
Indian J Microbiol. 2024 Jun;64(2):402-408. doi: 10.1007/s12088-024-01259-w. Epub 2024 Mar 23.
5
Drug Discovery in the Field of β-Lactams: An Academic Perspective.
Antibiotics (Basel). 2024 Jan 8;13(1):59. doi: 10.3390/antibiotics13010059.
6
Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding.
Toxics. 2023 Nov 5;11(11):903. doi: 10.3390/toxics11110903.
7
Sensing of Antibiotic-Bacteria Interactions.
Antibiotics (Basel). 2023 Aug 19;12(8):1340. doi: 10.3390/antibiotics12081340.
8
Targeted mutagenesis and high-throughput screening of diversified gene and promoter libraries for isolating gain-of-function mutations.
Front Bioeng Biotechnol. 2023 Jul 17;11:1202388. doi: 10.3389/fbioe.2023.1202388. eCollection 2023.
9
Electroactive Microorganisms in Advanced Energy Technologies.
Molecules. 2023 May 26;28(11):4372. doi: 10.3390/molecules28114372.

本文引用的文献

1
The Bacterial Cell Wall: From Lipid II Flipping to Polymerization.
Chem Rev. 2022 May 11;122(9):8884-8910. doi: 10.1021/acs.chemrev.1c00773. Epub 2022 Mar 11.
2
Development of a whole-cell biosensor for detection of antibiotics targeting bacterial cell envelope in Bacillus subtilis.
Appl Microbiol Biotechnol. 2022 Jan;106(2):789-798. doi: 10.1007/s00253-022-11762-z. Epub 2022 Jan 11.
3
Bacterial two-component systems as sensors for synthetic biology applications.
Curr Opin Syst Biol. 2021 Dec;28. doi: 10.1016/j.coisb.2021.100398. Epub 2021 Oct 15.
4
5
Microbial whole-cell biosensors: Current applications, challenges, and future perspectives.
Biosens Bioelectron. 2021 Nov 1;191:113359. doi: 10.1016/j.bios.2021.113359. Epub 2021 May 23.
6
Macrolide Biosensor Optimization through Cellular Substrate Sequestration.
ACS Synth Biol. 2021 Feb 19;10(2):258-264. doi: 10.1021/acssynbio.0c00572. Epub 2021 Feb 8.
7
Understanding tolerance to cell wall-active antibiotics.
Ann N Y Acad Sci. 2021 Jul;1496(1):35-58. doi: 10.1111/nyas.14541. Epub 2020 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验