Suppr超能文献

使用肌电计算机接口减少中风后的异常肌肉共同激活:一项初步研究。

Reducing Abnormal Muscle Coactivation After Stroke Using a Myoelectric-Computer Interface: A Pilot Study.

作者信息

Wright Zachary A, Rymer W Zev, Slutzky Marc W

机构信息

Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Northwestern University Feinberg School of Medicine, Chicago, IL, USA Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA.

出版信息

Neurorehabil Neural Repair. 2014 Jun;28(5):443-51. doi: 10.1177/1545968313517751. Epub 2013 Dec 27.

Abstract

Background A significant factor in impaired movement caused by stroke is the inability to activate muscles independently. Although the pathophysiology behind this abnormal coactivation is not clear, reducing the coactivation could improve overall arm function. A myoelectric computer interface (MCI), which maps electromyographic signals to cursor movement, could be used as a treatment to help retrain muscle activation patterns. Objective To investigate the use of MCI training to reduce abnormal muscle coactivation in chronic stroke survivors. Methods A total of 5 healthy participants and 5 stroke survivors with hemiparesis participated in multiple sessions of MCI training. The level of arm impairment in stroke survivors was assessed using the upper-extremity portion of the Fugl-Meyer Motor Assessment (FMA-UE). Participants performed isometric activations of up to 5 muscles. Activation of each muscle was mapped to different directions of cursor movement. The MCI specifically targeted 1 pair of muscles in each participant for reduction of coactivation. Results Both healthy participants and stroke survivors learned to reduce abnormal coactivation of the targeted muscles with MCI training. Out of 5 stroke survivors, 3 exhibited objective reduction in arm impairment as well (improvement in FMA-UE of 3 points in each of these patients). Conclusions These results suggest that the MCI was an effective tool in directly retraining muscle activation patterns following stroke.

摘要

背景

中风导致运动功能受损的一个重要因素是无法独立激活肌肉。尽管这种异常共同激活背后的病理生理学尚不清楚,但减少共同激活可能会改善整体手臂功能。肌电计算机接口(MCI)可将肌电信号映射为光标移动,可作为一种治疗方法来帮助重新训练肌肉激活模式。目的:研究使用MCI训练来减少慢性中风幸存者异常肌肉共同激活的情况。方法:共有5名健康参与者和5名偏瘫中风幸存者参加了多节MCI训练课程。使用Fugl-Meyer运动评估上肢部分(FMA-UE)评估中风幸存者的手臂损伤程度。参与者对多达5块肌肉进行等长激活。每块肌肉的激活被映射到光标移动的不同方向。MCI专门针对每个参与者的一对肌肉以减少共同激活。结果:健康参与者和中风幸存者都通过MCI训练学会了减少目标肌肉的异常共同激活。在5名中风幸存者中,有3名也表现出手臂损伤的客观减轻(这3名患者的FMA-UE各提高了3分)。结论:这些结果表明,MCI是中风后直接重新训练肌肉激活模式的有效工具。

相似文献

3

引用本文的文献

本文引用的文献

6
Visual feedback reduces co-contraction in children with dystonia.视觉反馈可减少肌张力障碍儿童的协同收缩。
J Child Neurol. 2011 Jan;26(1):37-43. doi: 10.1177/0883073810371828. Epub 2010 Jun 4.
9
Learning a novel myoelectric-controlled interface task.学习一项新型肌电控制接口任务。
J Neurophysiol. 2008 Oct;100(4):2397-408. doi: 10.1152/jn.90614.2008. Epub 2008 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验