Suppr超能文献

使用净重新分类改善(NRI)方法证实了联合遗传风险评分预测 2 型糖尿病的效用。

Use of net reclassification improvement (NRI) method confirms the utility of combined genetic risk score to predict type 2 diabetes.

机构信息

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China.

Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China ; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China ; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

出版信息

PLoS One. 2013 Dec 20;8(12):e83093. doi: 10.1371/journal.pone.0083093. eCollection 2013.

Abstract

BACKGROUND

Recent genome-wide association studies (GWAS) identified more than 70 novel loci for type 2 diabetes (T2D), some of which have been widely replicated in Asian populations. In this study, we investigated their individual and combined effects on T2D in a Chinese population.

METHODOLOGY

We selected 14 single nucleotide polymorphisms (SNPs) in T2D genes relating to beta-cell function validated in Asian populations and genotyped them in 5882 Chinese T2D patients and 2569 healthy controls. A combined genetic score (CGS) was calculated by summing up the number of risk alleles or weighted by the effect size for each SNP under an additive genetic model. We tested for associations by either logistic or linear regression analysis for T2D and quantitative traits, respectively. The contribution of the CGS for predicting T2D risk was evaluated by receiver operating characteristic (ROC) analysis and net reclassification improvement (NRI).

RESULTS

We observed consistent and significant associations of IGF2BP2, WFS1, CDKAL1, SLC30A8, CDKN2A/B, HHEX, TCF7L2 and KCNQ1 (8.5×10(-18)<P<8.5×10(-3)), as well as nominal associations of NOTCH2, JAZF1, KCNJ11 and HNF1B (0.05<P<0.1) with T2D risk, which yielded odds ratios ranging from 1.07 to 2.09. The 8 significant SNPs exhibited joint effect on increasing T2D risk, fasting plasma glucose and use of insulin therapy as well as reducing HOMA-β, BMI, waist circumference and younger age of diagnosis of T2D. The addition of CGS marginally increased AUC (2%) but significantly improved the predictive ability on T2D risk by 11.2% and 11.3% for unweighted and weighted CGS, respectively using the NRI approach (P<0.001).

CONCLUSION

In a Chinese population, the use of a CGS of 8 SNPs modestly but significantly improved its discriminative ability to predict T2D above and beyond that attributed to clinical risk factors (sex, age and BMI).

摘要

背景

最近的全基因组关联研究(GWAS)确定了 70 多个新的 2 型糖尿病(T2D)位点,其中一些在亚洲人群中得到了广泛验证。在这项研究中,我们研究了它们在中国人群中的个体和综合作用。

方法

我们选择了 14 个与亚洲人群中验证的β细胞功能相关的 T2D 基因中的单核苷酸多态性(SNP),并对 5882 名中国 T2D 患者和 2569 名健康对照进行了基因分型。根据加性遗传模型,通过累加每个 SNP 的风险等位基因数或加权效应大小计算出综合遗传评分(CGS)。我们分别使用逻辑回归或线性回归分析来检验 T2D 和定量性状的相关性。通过接受者操作特征(ROC)分析和净重新分类改善(NRI)评估 CGS 预测 T2D 风险的贡献。

结果

我们观察到 IGF2BP2、WFS1、CDKAL1、SLC30A8、CDKN2A/B、HHEX、TCF7L2 和 KCNQ1(8.5×10(-18)<P<8.5×10(-3))与 T2D 风险的一致性和显著关联,以及 NOTCH2、JAZF1、KCNJ11 和 HNF1B(0.05<P<0.1)与 T2D 风险的名义关联,其比值范围从 1.07 到 2.09。这 8 个显著 SNP 对增加 T2D 风险、空腹血糖和胰岛素治疗的使用以及降低 HOMA-β、BMI、腰围和 T2D 诊断年龄都有共同的影响。CGS 的加入略微增加了 AUC(2%),但使用 NRI 方法,加权和非加权 CGS 分别显著提高了 11.2%和 11.3%的 T2D 风险预测能力(P<0.001)。

结论

在中国人群中,使用 8 个 SNP 的 CGS 适度但显著地提高了其预测 T2D 的判别能力,超过了临床危险因素(性别、年龄和 BMI)的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/016f/3869744/ff05f00fe126/pone.0083093.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验