Suppr超能文献

肌肉骨骼超声用于识别肱桡关节软骨损伤的有效性:一项初步研究。

Validity of musculoskeletal ultrasound for identification of humeroradial joint chondral lesions: a preliminary investigation.

作者信息

Lohman Chelsea M, Smith Michael P, Dedrick Gregory S, Brismée Jean-Michel

机构信息

Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock.

出版信息

J Athl Train. 2014 Jan-Feb;49(1):7-14. doi: 10.4085/1062-6050-49.1.03. Epub 2013 Dec 30.

Abstract

CONTEXT

Epicondylalgia is a common condition involving pain-generating structures such as tendon, neural, and chondral tissue. The current noninvasive reference standard for identifying chondral lesions is magnetic resonance imaging. Musculoskeletal ultrasound (MUS) may be an inexpensive and effective alternative.

OBJECTIVE

To determine the intrarater reliability and validity of MUS for identifying humeroradial joint (HRJ) chondral lesions.

DESIGN

Cross-sectional study.

SETTING

Clinical anatomy research laboratory.

PATIENTS OR OTHER PARTICIPANTS

Twenty-eight embalmed cadavers (14 women, 14 men; mean age = 79.5 ± 8.5 years).

MAIN OUTCOME MEASURE(S): An athletic trainer performed MUS evaluation of each anterior and distal-posterior capitellum and radial head to identify chondral lesions. The reference standard was identification of chondral lesions by gross macroscopic examination. Intrarater reliability for reproducing an image was calculated using the intraclass correlation coefficient (3,k) for measurements of the articular surface using 2 images. Intrarater reliability to evaluate a single image was calculated using the Cohen κ for agreement as to the presence of chondral lesions. Validity was calculated using the agreement of MUS images and gross macroscopic examination.

RESULTS

Intrarater reliability was 0.88 (95% confidence interval = 0.77, 0.94) for reproducing an image and 0.93 (95% confidence interval = 0.80, 1.06) for evaluating a single image. Identifying chondral lesions on all HRJ surfaces with MUS demonstrated sensitivity = 0.93, specificity = 0.28, positive predictive value = 0.58, negative predictive value = 0.77, positive likelihood ratio = 1.28, and negative likelihood ratio = 0.27.

CONCLUSIONS

Musculoskeletal ultrasound is a reliable and sensitive tool for a clinician with relatively little experience and training to rule out HRJ chondral lesions. These results may assist with clinical assessment and decision making in patients with lateral epicondylalgia to rule out HRJ chondral lesions.

摘要

背景

肱骨外上髁炎是一种常见病症,涉及肌腱、神经和软骨组织等产生疼痛的结构。目前用于识别软骨损伤的非侵入性参考标准是磁共振成像。肌肉骨骼超声(MUS)可能是一种廉价且有效的替代方法。

目的

确定MUS识别肱桡关节(HRJ)软骨损伤的评分者内信度和效度。

设计

横断面研究。

设置

临床解剖学研究实验室。

患者或其他参与者

28具防腐尸体(14名女性,14名男性;平均年龄 = 79.5 ± 8.5岁)。

主要观察指标

一名运动训练师对每个肱骨小头和桡骨头的前侧及远侧 - 后侧进行MUS评估,以识别软骨损伤。参考标准是通过大体宏观检查识别软骨损伤。使用组内相关系数(3,k)计算测量关节表面的2张图像时再现图像的评分者内信度。使用Cohen κ计算评估单张图像时关于软骨损伤存在情况的一致性的评分者内信度。通过MUS图像与大体宏观检查的一致性计算效度。

结果

再现图像的评分者内信度为0.88(95%置信区间 = 0.77,0.94),评估单张图像的评分者内信度为0.93(95%置信区间 = 0.80,1.06)。用MUS识别所有HRJ表面的软骨损伤,其敏感性 = 0.93,特异性 = 0.28,阳性预测值 = 0.58,阴性预测值 = 0.77,阳性似然比 = 1.28,阴性似然比 = 0.27。

结论

对于经验和培训相对较少的临床医生而言,肌肉骨骼超声是排除HRJ软骨损伤的可靠且敏感的工具。这些结果可能有助于外侧肱骨外上髁炎患者的临床评估和决策,以排除HRJ软骨损伤。

相似文献

3
Ultrasound imaging of the humeral capitellum: a cadaveric study.肱骨小头的超声成像:一项尸体研究。
J Orthop Sci. 2014 Nov;19(6):907-12. doi: 10.1007/s00776-014-0637-9. Epub 2014 Sep 8.
10

本文引用的文献

1
Radiocapitellar cartilage injuries associated with tennis elbow syndrome.
J Hand Surg Am. 2012 Apr;37(4):748-54. doi: 10.1016/j.jhsa.2012.01.005. Epub 2012 Feb 25.
3
Office-based ultrasound in sports medicine practice.运动医学实践中的基于诊室的超声检查。
Clin J Sport Med. 2011 Jan;21(1):57-61. doi: 10.1097/JSM.0b013e31820758aa.
7
Ultrasound in the study and monitoring of osteoarthritis.超声在骨关节炎研究与监测中的应用
Osteoarthritis Cartilage. 2008;16 Suppl 3:S4-7. doi: 10.1016/j.joca.2008.06.005. Epub 2008 Aug 29.
10
Primary osteoarthritis of the elbow: current treatment options.原发性肘关节骨关节炎:当前的治疗选择
J Am Acad Orthop Surg. 2008 Feb;16(2):77-87. doi: 10.5435/00124635-200802000-00005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验