Suppr超能文献

线粒体 DNA 改变与线粒体功能障碍在肝细胞癌进展中的作用。

Mitochondrial DNA alterations and mitochondrial dysfunction in the progression of hepatocellular carcinoma.

机构信息

Chia-Chi Hsu, Hsin-Chen Lee, Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.

出版信息

World J Gastroenterol. 2013 Dec 21;19(47):8880-6. doi: 10.3748/wjg.v19.i47.8880.

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignancies and is ranked third in mortality among cancer-related diseases. Mitochondria are intracellular organelles that are responsible for energy metabolism and cellular homeostasis, and mitochondrial dysfunction has been regarded as a hallmark of cancer. Over the past decades, several types of mitochondrial DNA (mtDNA) alterations have been identified in human cancers, including HCC. However, the role of these mtDNA alterations in cancer progression is unclear. In this review, we summarize the recent findings on the somatic mtDNA alterations identified in HCC and their relationships with the clinicopathological features of HCC. Recent advances in understanding the potential roles of somatic mtDNA alterations in the progression of HCC are also discussed. We suggest that somatic mtDNA mutations and a decrease in the mtDNA copy number are common events in HCC and that a mitochondrial dysfunction-activated signaling cascade may play an important role in the progression of HCC. Elucidation of the retrograde signaling pathways in HCC and the quest for strategies to block some of these pathways will be instrumental for the development of novel treatments for this and other malignancies.

摘要

肝细胞癌(HCC)是最常见的恶性肿瘤之一,在癌症相关疾病的死亡率中排名第三。线粒体是负责能量代谢和细胞内稳态的细胞内细胞器,线粒体功能障碍被认为是癌症的一个标志。在过去的几十年中,已经在人类癌症中鉴定出了几种类型的线粒体 DNA(mtDNA)改变,包括 HCC。然而,这些 mtDNA 改变在癌症进展中的作用尚不清楚。在这篇综述中,我们总结了最近在 HCC 中发现的体细胞 mtDNA 改变及其与 HCC 的临床病理特征的关系。还讨论了对体细胞 mtDNA 改变在 HCC 进展中的潜在作用的理解的最新进展。我们认为体细胞 mtDNA 突变和 mtDNA 拷贝数减少是 HCC 中的常见事件,线粒体功能障碍激活的信号级联可能在 HCC 的进展中发挥重要作用。阐明 HCC 中的逆行信号通路以及寻找阻断其中一些通路的策略对于开发这种和其他恶性肿瘤的新治疗方法将是至关重要的。

相似文献

1
Mitochondrial DNA alterations and mitochondrial dysfunction in the progression of hepatocellular carcinoma.
World J Gastroenterol. 2013 Dec 21;19(47):8880-6. doi: 10.3748/wjg.v19.i47.8880.
2
Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma.
Br J Cancer. 2004 Jun 14;90(12):2390-6. doi: 10.1038/sj.bjc.6601838.
3
Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression.
World J Gastroenterol. 2014 Apr 14;20(14):3950-9. doi: 10.3748/wjg.v20.i14.3950.
4
Deciphering the Spectrum of Mitochondrial DNA Mutations in Hepatocellular Carcinoma Using High-Throughput Sequencing.
Gene Expr. 2018 May 18;18(2):125-134. doi: 10.3727/105221618X15185539348147. Epub 2018 Feb 20.
7
Genetic alterations in hepatocellular carcinoma: An update.
World J Gastroenterol. 2016 Nov 7;22(41):9069-9095. doi: 10.3748/wjg.v22.i41.9069.
9
Mitochondrial fission-induced mtDNA stress promotes tumor-associated macrophage infiltration and HCC progression.
Oncogene. 2019 Jun;38(25):5007-5020. doi: 10.1038/s41388-019-0772-z. Epub 2019 Mar 20.

引用本文的文献

1
Dynamics of mitochondrial DNA copy number regulation in relation to gastric cancer survival.
Discov Oncol. 2025 Jun 13;16(1):1090. doi: 10.1007/s12672-025-02825-4.
3
Multiple features of cell-free mtDNA for predicting transarterial chemoembolization response in hepatocellular carcinoma.
Hepatol Commun. 2025 Feb 26;9(3). doi: 10.1097/HC9.0000000000000652. eCollection 2025 Mar 1.
5
Mitochondria's Role in the Maintenance of Cancer Stem Cells in Hepatocellular Carcinoma.
Stem Cell Rev Rep. 2025 Jan;21(1):198-210. doi: 10.1007/s12015-024-10797-1. Epub 2024 Oct 18.
6
The role of mitochondria in tumor metastasis and advances in mitochondria-targeted cancer therapy.
Cancer Metastasis Rev. 2024 Dec;43(4):1419-1443. doi: 10.1007/s10555-024-10211-9. Epub 2024 Sep 23.
7
Frequencies and spectra of aflatoxin B-induced mutations in liver genomes of NEIL1-deficient mice as revealed by duplex sequencing.
NAR Mol Med. 2024 May 17;1(2):ugae006. doi: 10.1093/narmme/ugae006. eCollection 2024 Apr.
9
SPARC Controls Migration and Invasion of Hepatocellular Carcinoma Cells Via Regulating GPD2-Mediated Mitochondrial Respiration.
Biochem Genet. 2024 Dec;62(6):4518-4535. doi: 10.1007/s10528-024-10682-z. Epub 2024 Feb 9.
10
A Review of the Potential Role of CoQ10 in the Treatment of Hepatocellular Carcinoma.
Biochem Genet. 2024 Apr;62(2):575-593. doi: 10.1007/s10528-023-10490-x. Epub 2023 Aug 26.

本文引用的文献

1
Mitochondrial dysfunction represses HIF-1α protein synthesis through AMPK activation in human hepatoma HepG2 cells.
Biochim Biophys Acta. 2013 Oct;1830(10):4743-51. doi: 10.1016/j.bbagen.2013.06.004. Epub 2013 Jun 18.
2
Mitochondria: master regulators of danger signalling.
Nat Rev Mol Cell Biol. 2012 Dec;13(12):780-8. doi: 10.1038/nrm3479.
3
The Warburg effect: insights from the past decade.
Pharmacol Ther. 2013 Mar;137(3):318-30. doi: 10.1016/j.pharmthera.2012.11.003. Epub 2012 Nov 16.
5
Mitochondria and cancer.
Nat Rev Cancer. 2012 Oct;12(10):685-98. doi: 10.1038/nrc3365.
6
Hepatocellular carcinoma.
Lancet. 2012 Mar 31;379(9822):1245-55. doi: 10.1016/S0140-6736(11)61347-0. Epub 2012 Feb 20.
7
Role of aflatoxin B1 as a risk for primary liver cancer in north Indian population.
Clin Biochem. 2011 Oct;44(14-15):1235-40. doi: 10.1016/j.clinbiochem.2011.07.017. Epub 2011 Aug 10.
8
Somatic mutations of the mitochondrial genome in human breast cancers.
Genes Chromosomes Cancer. 2011 Oct;50(10):800-11. doi: 10.1002/gcc.20901. Epub 2011 Jul 11.
10
Targeting hypoxia in cancer therapy.
Nat Rev Cancer. 2011 Jun;11(6):393-410. doi: 10.1038/nrc3064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验