Suppr超能文献

小蛋白质:具有潜在生物学重要性的未开发领域。

Small proteins: untapped area of potential biological importance.

作者信息

Su Mingming, Ling Yunchao, Yu Jun, Wu Jiayan, Xiao Jingfa

机构信息

CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China ; Graduate University of Chinese Academy of Sciences Beijing, China.

CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences Beijing, China.

出版信息

Front Genet. 2013 Dec 16;4:286. doi: 10.3389/fgene.2013.00286.

Abstract

Polypeptides containing ≤100 amino acid residues (AAs) are generally considered to be small proteins (SPs). Many studies have shown that some SPs are involved in important biological processes, including cell signaling, metabolism, and growth. SP generally has a simple domain and has an advantage to be used as model system to overcome folding speed limits in protein folding simulation and drug design. But SPs were once thought to be trivial molecules in biological processes compared to large proteins. Because of the constraints of experimental methods and bioinformatics analysis, many genome projects have used a length threshold of 100 amino acid residues to minimize erroneous predictions and SPs are relatively under-represented in earlier studies. The general protein discovery methods have potential problems to predict and validate SPs, and very few effective tools and algorithms were developed specially for SPs identification. In this review, we mainly consider the diverse strategies applied to SPs prediction and discuss the challenge for differentiate SP coding genes from artifacts. We also summarize current large-scale discovery of SPs in species at the genome level. In addition, we present an overview of SPs with regard to biological significance, structural application, and evolution characterization in an effort to gain insight into the significance of SPs.

摘要

含有≤100个氨基酸残基(AAs)的多肽通常被视为小蛋白(SPs)。许多研究表明,一些小蛋白参与重要的生物学过程,包括细胞信号传导、代谢和生长。小蛋白通常具有简单的结构域,在用作模型系统以克服蛋白质折叠模拟和药物设计中的折叠速度限制方面具有优势。但与大蛋白相比,小蛋白曾被认为在生物学过程中是微不足道的分子。由于实验方法和生物信息学分析的限制,许多基因组计划使用100个氨基酸残基的长度阈值来尽量减少错误预测,并且在早期研究中小蛋白的代表性相对不足。一般的蛋白质发现方法在预测和验证小蛋白方面存在潜在问题,并且专门为小蛋白鉴定开发的有效工具和算法非常少。在本综述中,我们主要考虑应用于小蛋白预测的各种策略,并讨论区分小蛋白编码基因与伪影的挑战。我们还总结了目前在基因组水平上对物种中小蛋白的大规模发现。此外,我们概述了小蛋白在生物学意义、结构应用和进化特征方面的情况,以期深入了解小蛋白的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71e1/3864261/8cdf8d66b3d1/fgene-04-00286-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验