Wang Guanxing, Yan Xuedong, Zhang Fan, Zeng Chen, Gao Dan
MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China.
Int J Environ Res Public Health. 2013 Dec 30;11(1):456-72. doi: 10.3390/ijerph110100456.
This research examines traffic-source trace elements accumulations and distributions in roadside soils and wild grasses in the Qinghai-Tibet Plateau. A total of 100 soil samples and 100 grass samples including Achnatherum splendens, Anaphalis nepalensis, Artemisia sphaerocephala, Carex moorcroftii, Iris lacteal, Kobresia myosuroides, Oreosolen wattii, Oxytropis ochrocephala and Stellera chamaejasme were collected at 100 sites from different road segments. The contents of metals and metalloids, including Cu, Zn, Cd, Pb, Cr, Co, Ni and As, in the soil and grass samples were analyzed using ICP-MS. The total mean concentrations of the eight trace elements in soils are Cu (22.84 mg/kg), Zn (100.56 mg/kg), Cd (0.28 mg/kg), Pb (28.75 mg/kg), Cr (36.82 mg/kg), Co (10.24 mg/kg), Ni (32.44 mg/kg) and As (21.43 mg/kg), while in grasses are Cu (9.85 mg/kg), Zn (31.47 mg/kg), Cd (0.05 mg/kg), Pb (2.06 mg/kg), Cr (14.16 mg/kg), Co (0.55 mg/kg), Ni (4.03 mg/kg) and As (1.33 mg/kg). The metal and metalloid concentrations in the nine grass species were all below the critical values of hyperaccumulators. The mean values and Multivariate Analysis of Variance (MANOVA) results indicate that: (1) the concentrations of the trace elements in the soils are higher than those in the grasses, (2) the concentrations of Cu, Zn, Cd, Pb in the soils decrease as the roadside distance increases, (3) the concentrations of trace elements in the grasses are the highest at 10 m from the road edge, (4) the higher the traffic volume, the higher the concentrations of the trace elements in the roadside soils and grasses, and (5) when the land cover is meadow, the lower the sand content in the soil, the lower the trace element concentrations. With a trace element's bioavailability represented by its transfer factor (TF) from the soil to the grass, the TFs of the eight trace elements are not in the same orders for different grass species.
本研究调查了青藏高原路边土壤和野草中交通源微量元素的积累与分布情况。在不同路段的100个地点共采集了100份土壤样本和100份草类样本,包括芨芨草、尼泊尔香青、沙蒿、高山嵩草、马蔺、矮嵩草、藏紫菀、黄花棘豆和狼毒。采用电感耦合等离子体质谱法(ICP-MS)分析了土壤和草类样本中铜、锌、镉、铅、铬、钴、镍和砷等金属及类金属的含量。土壤中8种微量元素的总平均浓度分别为:铜(22.84毫克/千克)、锌(100.56毫克/千克)、镉(0.28毫克/千克)、铅(28.75毫克/千克)、铬(36.82毫克/千克)、钴(10.24毫克/千克)、镍(32.44毫克/千克)和砷(21.43毫克/千克);草类中的相应含量分别为:铜(9.85毫克/千克)、锌(31.47毫克/千克)、镉(0.05毫克/千克)、铅(2.06毫克/千克)、铬(14.16毫克/千克)、钴(0.55毫克/千克)、镍(4.03毫克/千克)和砷(1.33毫克/千克)。9种草类中的金属及类金属浓度均低于超富集植物的临界值。平均值和多变量方差分析(MANOVA)结果表明:(1)土壤中微量元素的浓度高于草类中的浓度;(2)土壤中铜、锌、镉、铅的浓度随路边距离增加而降低;(3)草类中微量元素的浓度在距路边10米处最高;(4)交通流量越大,路边土壤和草类中微量元素的浓度越高;(5)当土地覆盖类型为草地时,土壤含沙量越低,微量元素浓度越低。以微量元素从土壤到草类的转移因子(TF)表示其生物有效性时,8种微量元素在不同草类中的TF顺序并不相同。