Suppr超能文献

人工神经网络在临床前乳腺癌中的分析。

Artificial neural network analysis in preclinical breast cancer.

机构信息

Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran.

出版信息

Cell J. 2014 Winter;15(4):324-31. Epub 2013 Nov 20.

Abstract

OBJECTIVE

In this study, artificial neural network (ANN) analysis of virotherapy in preclinical breast cancer was investigated.

MATERIALS AND METHODS

In this research article, a multilayer feed-forward neural network trained with an error back-propagation algorithm was incorporated in order to develop a predictive model. The input parameters of the model were virus dose, week and tamoxifen citrate, while tumor weight was included in the output parameter. Two different training algorithms, namely quick propagation (QP) and Levenberg-Marquardt (LM), were used to train ANN.

RESULTS

The results showed that the LM algorithm, with 3-9-1 arrangement is more efficient compared to QP. Using LM algorithm, the coefficient of determination (R(2)) between the actual and predicted values was determined as 0.897118 for all data.

CONCLUSION

It can be concluded that this ANN model may provide good ability to predict the biometry information of tumor in preclinical breast cancer virotherapy. The results showed that the LM algorithm employed by Neural Power software gave the better performance compared with the QP and virus dose, and it is more important factor compared to tamoxifen and time (week).

摘要

目的

本研究旨在探讨人工神经网络(ANN)分析在临床前乳腺癌病毒治疗中的应用。

材料与方法

在本研究论文中,采用误差反向传播算法训练多层前馈神经网络,以开发预测模型。模型的输入参数包括病毒剂量、周和他莫昔芬柠檬酸,而肿瘤重量则包含在输出参数中。使用两种不同的训练算法,即快速传播(QP)和 Levenberg-Marquardt(LM)来训练 ANN。

结果

结果表明,与 QP 相比,LM 算法的 3-9-1 排列更有效。使用 LM 算法,所有数据的实际值与预测值之间的确定系数(R²)确定为 0.897118。

结论

可以得出结论,该 ANN 模型可能为临床前乳腺癌病毒治疗中的肿瘤生物计量信息提供良好的预测能力。结果表明,与 QP 相比,Neural Power 软件中使用的 LM 算法表现更好,与病毒剂量相比,它是比他莫昔芬和时间(周)更重要的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ea4/3866536/f3971d080bac/Cell-J-15-324-g02.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验