Suppr超能文献

利用结构轮廓指导蛋白质构象空间的概率搜索。

Guiding probabilistic search of the protein conformational space with structural profiles.

作者信息

Olson Brian, Molloy Kevin, Hendi S Farid, Shehu Amarda

机构信息

Department of Computer Science, George Mason University, 4400 University Drive Fairfax, VA 22030, USA.

出版信息

J Bioinform Comput Biol. 2012 Jun;10(3):1242005. doi: 10.1142/S021972001242005X.

Abstract

The roughness of the protein energy surface poses a significant challenge to search algorithms that seek to obtain a structural characterization of the native state. Recent research seeks to bias search toward near-native conformations through one-dimensional structural profiles of the protein native state. Here we investigate the effectiveness of such profiles in a structure prediction setting for proteins of various sizes and folds. We pursue two directions. We first investigate the contribution of structural profiles in comparison to or in conjunction with physics-based energy functions in providing an effective energy bias. We conduct this investigation in the context of Metropolis Monte Carlo with fragment-based assembly. Second, we explore the effectiveness of structural profiles in providing projection coordinates through which to organize the conformational space. We do so in the context of a robotics-inspired search framework proposed in our lab that employs projections of the conformational space to guide search. Our findings indicate that structural profiles are most effective in obtaining physically realistic near-native conformations when employed in conjunction with physics-based energy functions. Our findings also show that these profiles are very effective when employed instead as projection coordinates to guide probabilistic search toward undersampled regions of the conformational space.

摘要

蛋白质能量表面的粗糙度对旨在获得天然状态结构特征的搜索算法构成了重大挑战。最近的研究试图通过蛋白质天然状态的一维结构轮廓,使搜索偏向近天然构象。在此,我们研究此类轮廓在各种大小和折叠的蛋白质结构预测设置中的有效性。我们探索两个方向。首先,我们研究结构轮廓在与基于物理的能量函数相比或结合时,在提供有效能量偏差方面的作用。我们在基于片段组装的 metropolis 蒙特卡罗背景下进行此研究。其次,我们探索结构轮廓在提供投影坐标以组织构象空间方面的有效性。我们在我们实验室提出的受机器人启发的搜索框架背景下进行此操作,该框架采用构象空间的投影来指导搜索。我们的研究结果表明,当与基于物理的能量函数结合使用时,结构轮廓在获得物理上逼真的近天然构象方面最为有效。我们的研究结果还表明,当这些轮廓用作投影坐标来指导对构象空间欠采样区域的概率搜索时,它们非常有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验