Suppr超能文献

Caspase 3 沉默抑制生物力学超负荷诱导的椎间盘退变。

Caspase 3 silencing inhibits biomechanical overload-induced intervertebral disk degeneration.

机构信息

Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Hokkaido, Japan.

Department of Advanced Medicine for Spine and Spinal Cord Disorders, Hokkaido University Graduate School of Medicine, Hokkaido, Japan.

出版信息

Am J Pathol. 2014 Mar;184(3):753-64. doi: 10.1016/j.ajpath.2013.11.010. Epub 2014 Jan 3.

Abstract

Intervertebral disk (IVD) degeneration causes debilitating low back pain in much of the worldwide population. No efficient treatment exists because of an unclear pathogenesis. One characteristic event early in such degeneration is the apoptosis of nucleus pulposus (NP) cells embedded in IVDs. Excessive biomechanical loading may also be a major etiology of IVD degeneration. The present study used in vitro and in vivo models of compressive loading to elucidate the underlying mechanism of IVD degeneration. In addition, we investigated whether the inhibition of apoptosis is a potential clinical therapeutic strategy for the treatment of IVD degeneration induced by biomechanical stress. A TUNEL assay showed that NP cell-agarose three-dimensional composite cultures subjected to uniaxial, unconfined, static, compressive loading exhibited a time-dependent increase in apoptosis. Western blot analysis revealed the up-regulation of several extracellular matrix-degrading enzymes and down-regulation of tissue inhibitor of metalloproteinase 1. These responses to compressive loading were all significantly inhibited by caspase 3 siRNA. In the in vivo model of compressive loading-induced IVD degeneration, a single local injection of caspase 3 siRNA significantly inhibited IVD degeneration by magnetic resonance imaging, histological findings, IHC, and TUNEL assay. The present study suggests that caspase 3 siRNA attenuates overload-induced IVD degeneration by inhibiting NP cell apoptosis and the expression of matrix-degrading enzymes.

摘要

椎间盘(IVD)退变导致全球大部分人群出现使人衰弱的腰痛。由于发病机制尚不清楚,目前尚无有效的治疗方法。IVD 退变早期的一个特征性事件是嵌入 IVD 的髓核(NP)细胞的凋亡。过度的生物力学负荷也可能是 IVD 退变的主要病因。本研究采用体外和体内压缩加载模型,阐明了 IVD 退变的潜在机制。此外,我们还研究了抑制细胞凋亡是否是一种潜在的临床治疗策略,用于治疗生物力学应激引起的 IVD 退变。TUNEL 检测显示,NP 细胞-琼脂糖三维复合培养物在单轴、无约束、静态、压缩加载下表现出时间依赖性的凋亡增加。Western blot 分析显示,几种细胞外基质降解酶的表达上调,组织金属蛋白酶抑制剂 1 的表达下调。这些对压缩加载的反应均被 caspase 3 siRNA 显著抑制。在压缩加载诱导的 IVD 退变的体内模型中,单次局部注射 caspase 3 siRNA 通过磁共振成像、组织学发现、免疫组织化学和 TUNEL 检测显著抑制了 IVD 退变。本研究表明,caspase 3 siRNA 通过抑制 NP 细胞凋亡和基质降解酶的表达,减轻了过载诱导的 IVD 退变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验