Suppr超能文献

植物中基因编码 pH 传感器的发展和特性。

Development and properties of genetically encoded pH sensors in plants.

机构信息

Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2 Montpellier, France.

Laboratory of Tropical and Mediterranean Symbioses (UMR113, Université Montpellier 2, Institut de Recherche pour le Développement, Cirad Montpellier SupAgro, Institut National de la Recherche Agronomique), Université Montpellier 2 Montpellier, France.

出版信息

Front Plant Sci. 2013 Dec 18;4:523. doi: 10.3389/fpls.2013.00523. eCollection 2013.

Abstract

Fluorescent proteins (FPs) have given access to a large choice of live imaging techniques and have thereby profoundly modified our view of plant cells. Together with technological improvement of imaging, they have opened the possibility to monitor physico-chemical changes within cells. For this purpose, a new generation of FPs has been engineered. For instance, pHluorin, a point mutated version of green fluorescent protein, allows to get local pH estimates. In this paper, we will describe how genetically encoded sensors can be used to measure pH in the microenvironment of living tissues and subsequently discuss the role of pH in (i) exocytosis, (ii) ion uptake by plant roots, (iii) cell growth, and (iv) protein trafficking.

摘要

荧光蛋白(FPs)为多种活体成像技术提供了可能,从而极大地改变了我们对植物细胞的认识。随着成像技术的不断改进,它们为监测细胞内的物理化学变化提供了可能。为此,人们已经设计出了新一代的荧光蛋白。例如,pHluroin 是绿色荧光蛋白的一个点突变版本,它可以用来估计局部 pH 值。在本文中,我们将描述如何利用遗传编码的传感器来测量活组织微环境中的 pH 值,并随后讨论 pH 值在以下方面的作用:(i)胞吐作用;(ii)植物根系对离子的摄取;(iii)细胞生长;(iv)蛋白质运输。

相似文献

1
Development and properties of genetically encoded pH sensors in plants.
Front Plant Sci. 2013 Dec 18;4:523. doi: 10.3389/fpls.2013.00523. eCollection 2013.
2
Rational Engineering of an Improved Genetically Encoded pH Sensor Based on Superecliptic pHluorin.
ACS Sens. 2023 Aug 25;8(8):3014-3022. doi: 10.1021/acssensors.3c00484. Epub 2023 Jul 23.
3
Semisynthetic fluorescent pH sensors for imaging exocytosis and endocytosis.
Nat Commun. 2017 Nov 10;8(1):1412. doi: 10.1038/s41467-017-01752-5.
4
The Organelle pH Estimate and Measurement in Plant Secretory Pathway.
Methods Mol Biol. 2017;1662:223-230. doi: 10.1007/978-1-4939-7262-3_20.
5
Fluorescent protein applications in plants.
Methods Cell Biol. 2008;85:153-77. doi: 10.1016/S0091-679X(08)85008-X.
7
Genetically encoded fluorescent indicators for live cell pH imaging.
Biochim Biophys Acta Gen Subj. 2018 Dec;1862(12):2924-2939. doi: 10.1016/j.bbagen.2018.09.013. Epub 2018 Sep 20.
8
Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants.
Plant J. 2003 Aug;35(4):545-55. doi: 10.1046/j.1365-313x.2003.01822.x.
9
A new fluorescence-based method to monitor the pH in the thylakoid lumen using GFP variants.
Biochem Biophys Res Commun. 2017 Apr 22;486(1):1-5. doi: 10.1016/j.bbrc.2016.12.032. Epub 2016 Dec 8.
10
Novel uses of fluorescent proteins.
Curr Opin Chem Biol. 2015 Aug;27:1-9. doi: 10.1016/j.cbpa.2015.05.002. Epub 2015 May 25.

引用本文的文献

1
Nanobody-based VSR7 tracing shows clathrin-dependent TGN to Golgi recycling.
Nat Commun. 2023 Oct 30;14(1):6926. doi: 10.1038/s41467-023-42331-1.
2
Cell-Type-Specific Length and Cytosolic pH Response of Superficial Cells of Root to Chronic Salinity.
Plants (Basel). 2022 Dec 15;11(24):3532. doi: 10.3390/plants11243532.
3
Empowering roots-Some current aspects of root bioenergetics.
Front Plant Sci. 2022 Aug 16;13:853309. doi: 10.3389/fpls.2022.853309. eCollection 2022.
4
Electrochemical Sensors for Sustainable Precision Agriculture-A Review.
Front Chem. 2022 May 9;10:848320. doi: 10.3389/fchem.2022.848320. eCollection 2022.
5
pH biosensing in the plant apoplast-a focus on root cell elongation.
Plant Physiol. 2021 Oct 5;187(2):504-514. doi: 10.1093/plphys/kiab313.
6
NADPH Oxidase-derived ROS promote mitochondrial alkalization under salt stress in root cells.
Plant Signal Behav. 2021 Mar 4;16(3):1856546. doi: 10.1080/15592324.2020.1856546. Epub 2020 Dec 14.
7
How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms.
Front Plant Sci. 2020 Aug 7;11:1102. doi: 10.3389/fpls.2020.01102. eCollection 2020.
8
Dynamic measurement of cytosolic pH and [NO] uncovers the role of the vacuolar transporter AtCLCa in cytosolic pH homeostasis.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):15343-15353. doi: 10.1073/pnas.2007580117. Epub 2020 Jun 16.
9
Plant nitrogen uptake and assimilation: regulation of cellular pH homeostasis.
J Exp Bot. 2020 Jul 25;71(15):4380-4392. doi: 10.1093/jxb/eraa150.
10
Dominant and Recessive Major Genes Lead to Different Types of Host Cell Death During Resistance to in Rice.
Front Plant Sci. 2018 Nov 21;9:1711. doi: 10.3389/fpls.2018.01711. eCollection 2018.

本文引用的文献

4
Receptor-mediated transport of vacuolar proteins: a critical analysis and a new model.
Protoplasma. 2014 Jan;251(1):247-64. doi: 10.1007/s00709-013-0542-7. Epub 2013 Sep 10.
5
Perspectives for using genetically encoded fluorescent biosensors in plants.
Front Plant Sci. 2013 Jul 12;4:234. doi: 10.3389/fpls.2013.00234. eCollection 2013.
6
Organelle pH in the Arabidopsis endomembrane system.
Mol Plant. 2013 Sep;6(5):1419-37. doi: 10.1093/mp/sst079. Epub 2013 May 23.
7
In vivo biochemistry: applications for small molecule biosensors in plant biology.
Curr Opin Plant Biol. 2013 Jun;16(3):389-95. doi: 10.1016/j.pbi.2013.02.010. Epub 2013 Apr 12.
8
pHlash: a new genetically encoded and ratiometric luminescence sensor of intracellular pH.
PLoS One. 2012;7(8):e43072. doi: 10.1371/journal.pone.0043072. Epub 2012 Aug 14.
9
Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis.
Curr Opin Plant Biol. 2012 Aug;15(4):444-53. doi: 10.1016/j.pbi.2012.04.002. Epub 2012 Jun 22.
10
Trying to make sense of retromer.
Trends Plant Sci. 2012 Jul;17(7):431-9. doi: 10.1016/j.tplants.2012.03.005. Epub 2012 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验