Sander Ian M, Chaney Julie L, Clark Patricia L
Department of Chemistry & Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States.
J Am Chem Soc. 2014 Jan 22;136(3):858-61. doi: 10.1021/ja411302m. Epub 2014 Jan 13.
Anfinsen's principle asserts that all information required to specify the structure of a protein is encoded in its amino acid sequence. However, during protein synthesis by the ribosome, the N-terminus of the nascent chain can begin to fold before the C-terminus is available. We tested whether this cotranslational folding can alter the folded structure of an encoded protein in vivo, versus the structure formed when refolded in vitro. We designed a fluorescent protein consisting of three half-domains, where the N- and C-terminal half-domains compete with each other to interact with the central half-domain. The outcome of this competition determines the fluorescence properties of the resulting folded structure. Upon refolding after chemical denaturation, this protein produced equimolar amounts of the N- and C-terminal folded structures, respectively. In contrast, translation in Escherichia coli resulted in a 2-fold enhancement in the formation of the N-terminal folded structure. Rare synonymous codon substitutions at the 5' end of the C-terminal half-domain further increased selection for the N-terminal folded structure. These results demonstrate that the rate at which a nascent protein emerges from the ribosome can specify the folded structure of a protein.
安芬森原理指出,确定蛋白质结构所需的所有信息都编码在其氨基酸序列中。然而,在核糖体进行蛋白质合成的过程中,新生肽链的N端在C端形成之前就可能开始折叠。我们测试了这种共翻译折叠在体内是否会改变编码蛋白质的折叠结构,以及与体外重折叠形成的结构相比会有何不同。我们设计了一种由三个半结构域组成的荧光蛋白,其中N端和C端的半结构域相互竞争以与中央半结构域相互作用。这种竞争的结果决定了最终折叠结构的荧光特性。化学变性后重折叠时,这种蛋白质分别产生等摩尔量的N端和C端折叠结构。相比之下,在大肠杆菌中进行翻译时,N端折叠结构的形成增加了2倍。C端半结构域5'端的稀有同义密码子替换进一步增加了对N端折叠结构的选择。这些结果表明,新生蛋白质从核糖体中出现的速度可以决定蛋白质的折叠结构。