Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77550-0620, USA.
J Mol Biol. 2012 Sep 21;422(3):328-35. doi: 10.1016/j.jmb.2012.06.010. Epub 2012 Jun 12.
Genetic code redundancy allows most amino acids to be encoded by multiple codons that are non-randomly distributed along coding sequences. An accepted theory explaining the biological significance of such non-uniform codon selection is that codons are translated at different speeds. Thus, varying codon placement along a message may confer variable rates of polypeptide emergence from the ribosome, which may influence the capacity to fold toward the native state. Previous studies report conflicting results regarding whether certain codons correlate with particular structural or folding properties of the encoded protein. This is partly due to different criteria traditionally utilized for predicting translation speeds of codons, including their usage frequencies and the concentration of tRNA species capable of decoding them, which do not always correlate. Here, we developed a metric to predict organism-specific relative translation rates of codons based on the availability of tRNA decoding mechanisms: Watson-Crick, non-Watson-Crick or both types of interactions. We determine translation rates of messages by pulse-chase analyses in living Escherichia coli cells and show that sequence engineering based on these concepts predictably modulates translation rates in a manner that is superior to codon usage frequency, which occur during the elongation phase, and significantly impacts folding of the encoded polypeptide. Finally, we demonstrate that sequence harmonization based on expression host tRNA pools, designed to mimic ribosome movement of the original organism, can significantly increase the folding of the encoded polypeptide. These results illuminate how genetic code degeneracy may function to specify properties beyond amino acid encoding, including folding.
遗传密码冗余允许大多数氨基酸由非随机分布在编码序列中的多个密码子编码。一种被广泛接受的理论解释了这种非均匀密码子选择的生物学意义,即密码子的翻译速度不同。因此,在信息中改变密码子的位置可能会导致多肽从核糖体中以不同的速度出现,这可能会影响其向天然状态折叠的能力。先前的研究报告表明,某些密码子是否与编码蛋白的特定结构或折叠特性相关存在矛盾的结果。这部分是由于传统上用于预测密码子翻译速度的标准不同,包括它们的使用频率和能够解码它们的 tRNA 种类的浓度,这些标准并不总是相关的。在这里,我们开发了一种基于 tRNA 解码机制的可用性来预测生物体特定的相对密码子翻译率的指标:沃森-克里克(Watson-Crick)、非沃森-克里克(non-Watson-Crick)或这两种类型的相互作用。我们通过在活的大肠杆菌细胞中的脉冲追踪分析来确定信息的翻译速度,并表明基于这些概念的序列工程可预测性地调节翻译速度,这种方式优于密码子使用频率,后者发生在延伸阶段,并显著影响编码多肽的折叠。最后,我们证明了基于表达宿主 tRNA 池的序列协调,旨在模拟原始生物体的核糖体运动,可以显著提高编码多肽的折叠。这些结果阐明了遗传密码简并性如何能够指定超越氨基酸编码的特性,包括折叠。