Roots Cameron T, Hill Alexis M, Wilke Claus O, Barrick Jeffrey E
bioRxiv. 2024 Nov 28:2024.11.28.625058. doi: 10.1101/2024.11.28.625058.
Excess utilization of translational resources is a critical source of burden on cells engineered to over-express exogenous proteins. To improve protein yields and genetic stability, researchers often use codon optimization strategies that improve translational efficiency by matching an exogenous gene's codon usage with that of the host organism's highly expressed genes. Despite empirical data that shows the benefits of codon optimization, little is known quantitatively about the relationship between codon usage bias and the burden imposed by protein overexpression. Here, we develop and experimentally evaluate a stochastic gene expression model that considers the impact of codon usage bias on the availability of ribosomes and different tRNAs in a cell. In agreement with other studies, our model shows that increasing exogenous protein expression decreases production of native cellular proteins in a linear fashion. We also find that the slope of this relationship is modulated by how well the codon usage bias of the exogenous gene and the host's genes match. Strikingly, we predict that an overoptimization domain exists where further increasing usage of optimal codons worsens yield and burden. We test our model by expressing sfGFP and mCherry2 from constructs that have a wide range of codon optimization levels in . The results agree with our model, including for an mCherry2 gene sequence that appears to lose expression and genetic stability from codon overoptimization. Our findings can be leveraged by researchers to predict and design more optimal cellular systems through the use of more nuanced codon optimization strategies.
翻译资源的过度利用是工程改造以过度表达外源蛋白的细胞负担的关键来源。为了提高蛋白质产量和遗传稳定性,研究人员经常使用密码子优化策略,通过使外源基因的密码子使用与宿主生物体高表达基因的密码子使用相匹配来提高翻译效率。尽管有经验数据表明密码子优化的益处,但关于密码子使用偏好与蛋白质过度表达所带来的负担之间的关系,定量了解甚少。在这里,我们开发并通过实验评估了一个随机基因表达模型,该模型考虑了密码子使用偏好在细胞中对核糖体和不同tRNA可用性的影响。与其他研究一致,我们的模型表明,增加外源蛋白表达会以线性方式降低天然细胞蛋白的产量。我们还发现,这种关系的斜率受到外源基因和宿主基因密码子使用偏好匹配程度的调节。令人惊讶的是,我们预测存在一个过度优化区域,在该区域进一步增加最优密码子的使用会使产量和负担恶化。我们通过在大肠杆菌中表达具有广泛密码子优化水平的构建体中的sfGFP和mCherry2来测试我们的模型。结果与我们的模型一致,包括对于一个mCherry2基因序列,其似乎因密码子过度优化而失去表达和遗传稳定性。研究人员可以利用我们的发现,通过使用更细致入微的密码子优化策略来预测和设计更优的细胞系统。