Suppr超能文献

共翻译折叠增加 GFP 折叠产量。

Cotranslational folding increases GFP folding yield.

机构信息

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA.

出版信息

Biophys J. 2010 Apr 7;98(7):1312-20. doi: 10.1016/j.bpj.2009.12.4291.

Abstract

Protein sequences evolved to fold in cells, including cotranslational folding of nascent polypeptide chains during their synthesis by the ribosome. The vectorial (N- to C-terminal) nature of cotranslational folding constrains the conformations of the nascent polypeptide chain in a manner not experienced by full-length chains diluted out of denaturant. We are still discovering to what extent these constraints affect later, posttranslational folding events. Here we directly address whether conformational constraints imposed by cotranslational folding affect the partitioning between productive folding to the native structure versus aggregation. We isolated polyribosomes from Escherichia coli cells expressing GFP, analyzed the nascent chain length distribution to determine the number of nascent chains that were long enough to fold to the native fluorescent structure, and calculated the folding yield for these nascent chains upon ribosome release versus the folding yield of an equivalent concentration of full-length, chemically denatured GFP polypeptide chains. We find that the yield of native fluorescent GFP is dramatically higher upon ribosome release of nascent chains versus dilution of full-length chains from denaturant. For kinetically trapped native structures such as GFP, folding correctly the first time, immediately after release from the ribosome, can lead to lifelong population of the native structure, as opposed to aggregation.

摘要

蛋白质序列在细胞中进化以折叠,包括核糖体合成新生多肽链时的共翻译折叠。共翻译折叠的向量性质(N 端到 C 端)以未经历全长链从变性剂中稀释的方式限制新生多肽链的构象。我们仍在发现这些约束在何种程度上影响后续的翻译后折叠事件。在这里,我们直接研究共翻译折叠施加的构象约束是否会影响产物折叠到天然结构与聚集之间的分配。我们从表达 GFP 的大肠杆菌细胞中分离多核糖体,分析新生链长度分布以确定足够长以折叠到天然荧光结构的新生链的数量,并计算核糖体释放时这些新生链的折叠产率与等效浓度的全长化学变性 GFP 多肽链的折叠产率。我们发现,与从变性剂中稀释全长链相比,核糖体释放新生链时产生天然荧光 GFP 的产率大大提高。对于 GFP 等动力学捕获的天然结构,在核糖体释放后立即正确折叠第一次可以导致天然结构的终身存在,而不是聚集。

相似文献

1
Cotranslational folding increases GFP folding yield.
Biophys J. 2010 Apr 7;98(7):1312-20. doi: 10.1016/j.bpj.2009.12.4291.
2
Kinetic analysis of ribosome-bound fluorescent proteins reveals an early, stable, cotranslational folding intermediate.
J Biol Chem. 2012 Jan 20;287(4):2568-78. doi: 10.1074/jbc.M111.318766. Epub 2011 Nov 28.
3
Measuring cotranslational folding of nascent polypeptide chains on ribosomes.
Methods Enzymol. 2009;466:567-90. doi: 10.1016/S0076-6879(09)66024-9. Epub 2009 Nov 13.
4
A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding.
Nat Struct Mol Biol. 2016 Apr;23(4):278-285. doi: 10.1038/nsmb.3182. Epub 2016 Feb 29.
5
In vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome.
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):E132-40. doi: 10.1073/pnas.1213624110. Epub 2012 Dec 19.
6
Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo.
J Mol Biol. 2008 Nov 14;383(3):683-92. doi: 10.1016/j.jmb.2008.07.035. Epub 2008 Jul 22.
7
Cotranslational protein folding on the ribosome monitored in real time.
Science. 2015 Nov 27;350(6264):1104-7. doi: 10.1126/science.aad0344.
8
Principles of cotranslational ubiquitination and quality control at the ribosome.
Mol Cell. 2013 May 9;50(3):379-93. doi: 10.1016/j.molcel.2013.03.010. Epub 2013 Apr 11.
9
Molecular mechanism and structure of Trigger Factor bound to the translating ribosome.
EMBO J. 2008 Jun 4;27(11):1622-32. doi: 10.1038/emboj.2008.89. Epub 2008 May 22.
10
Nanosecond dynamics of calmodulin and ribosome-bound nascent chains studied by time-resolved fluorescence anisotropy.
Chembiochem. 2014 May 5;15(7):977-85. doi: 10.1002/cbic.201400014. Epub 2014 Mar 18.

引用本文的文献

2
Native Fold Delay and its implications for co-translational chaperone binding and protein aggregation.
Nat Commun. 2025 Feb 15;16(1):1673. doi: 10.1038/s41467-025-57033-z.
3
The importance of the location of the N-terminus in successful protein folding in vivo and in vitro.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2321999121. doi: 10.1073/pnas.2321999121. Epub 2024 Aug 15.
5
Engineering a Fluorescent Protein Color Switch Using Entropy-Driven β-Strand Exchange.
ACS Sens. 2022 Jan 28;7(1):263-271. doi: 10.1021/acssensors.1c02239. Epub 2022 Jan 10.
6
β-Barrels and Amyloids: Structural Transitions, Biological Functions, and Pathogenesis.
Int J Mol Sci. 2021 Oct 20;22(21):11316. doi: 10.3390/ijms222111316.
7
Effect of Protein Structure on Evolution of Cotranslational Folding.
Biophys J. 2020 Sep 15;119(6):1123-1134. doi: 10.1016/j.bpj.2020.06.037. Epub 2020 Aug 12.
8
(Almost) Everything in Cotranslational Folding Makes Sense in the Light of Evolution.
Biophys J. 2020 Sep 15;119(6):1045-1047. doi: 10.1016/j.bpj.2020.08.007. Epub 2020 Aug 13.
9
Transmembrane protein rotaxanes reveal kinetic traps in the refolding of translocated substrates.
Commun Biol. 2020 Apr 3;3(1):159. doi: 10.1038/s42003-020-0840-5.

本文引用的文献

1
The native 3D organization of bacterial polysomes.
Cell. 2009 Jan 23;136(2):261-71. doi: 10.1016/j.cell.2008.11.016.
2
A pause for thought along the co-translational folding pathway.
Trends Biochem Sci. 2009 Jan;34(1):16-24. doi: 10.1016/j.tibs.2008.10.002. Epub 2008 Nov 6.
3
Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo.
J Mol Biol. 2008 Nov 14;383(3):683-92. doi: 10.1016/j.jmb.2008.07.035. Epub 2008 Jul 22.
4
Single-molecule imaging of full protein synthesis by immobilized ribosomes.
Nucleic Acids Res. 2008 Jul;36(12):e70. doi: 10.1093/nar/gkn338. Epub 2008 May 29.
5
Molecular mechanism and structure of Trigger Factor bound to the translating ribosome.
EMBO J. 2008 Jun 4;27(11):1622-32. doi: 10.1038/emboj.2008.89. Epub 2008 May 22.
6
Dynamics of trigger factor interaction with translating ribosomes.
J Biol Chem. 2008 Feb 15;283(7):4124-32. doi: 10.1074/jbc.M708294200. Epub 2007 Nov 28.
7
Identifying the subproteome of kinetically stable proteins via diagonal 2D SDS/PAGE.
Proc Natl Acad Sci U S A. 2007 Oct 30;104(44):17329-34. doi: 10.1073/pnas.0705417104. Epub 2007 Oct 23.
8
The rough energy landscape of superfolder GFP is linked to the chromophore.
J Mol Biol. 2007 Oct 19;373(2):476-90. doi: 10.1016/j.jmb.2007.07.071. Epub 2007 Aug 15.
9
Understanding the folding of GFP using biophysical techniques.
Expert Rev Proteomics. 2006 Oct;3(5):545-59. doi: 10.1586/14789450.3.5.545.
10
Real-time observation of trigger factor function on translating ribosomes.
Nature. 2006 Nov 23;444(7118):455-60. doi: 10.1038/nature05225. Epub 2006 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验