Hugonnet Jean-Emmanuel, Haddache Nabila, Veckerlé Carole, Dubost Lionel, Marie Arul, Shikura Noriyasu, Mainardi Jean-Luc, Rice Louis B, Arthur Michel
Centre de Recherche des Cordeliers, LRMA, Equipe 12, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, France.
Antimicrob Agents Chemother. 2014;58(3):1749-56. doi: 10.1128/AAC.02329-13. Epub 2014 Jan 6.
Synthesis of peptidoglycan precursors ending in D-lactate (D-Lac) is thought to be responsible for glycopeptide resistance in members of the order Actinomycetales that produce these drugs and in related soil bacteria. More recently, the peptidoglycan of several members of the order Actinomycetales was shown to be cross-linked by L,D-transpeptidases that use tetrapeptide acyl donors devoid of the target of glycopeptides. To evaluate the contribution of these resistance mechanisms, we have determined the peptidoglycan structure of Streptomyces coelicolor A(3)2, which harbors a vanHAX gene cluster for the production of precursors ending in D-Lac, and Nonomuraea sp. strain ATCC 39727, which is devoid of vanHAX and produces the glycopeptide A40296. Vancomycin retained residual activity against S. coelicolor A(3)2 despite efficient incorporation of D-Lac into cytoplasmic precursors. This was due to a D,D-transpeptidase-catalyzed reaction that generated a stem pentapeptide recognized by glycopeptides by the exchange of D-Lac for D-Ala and Gly. The contribution of L,D-transpeptidases to resistance was limited by the supply of tetrapeptide acyl donors, which are essential for the formation of peptidoglycan cross-links by these enzymes. In the absence of a cytoplasmic metallo-D,D-carboxypeptidase, the tetrapeptide substrate was generated by hydrolysis of the C-terminal D-Lac residue of the stem pentadepsipeptide in the periplasm in competition with the exchange reaction catalyzed by D,D-transpeptidases. In Nonomuraea sp. strain ATCC 39727, the contribution of L,D-transpeptidases to glycopeptide resistance was limited by the incomplete conversion of pentapeptides into tetrapeptides despite the production of a cytoplasmic metallo-D,D-carboxypeptidase. Since the level of drug production exceeds the level of resistance, we propose that L,D-transpeptidases merely act as a tolerance mechanism in this bacterium.
以D - 乳酸(D - Lac)结尾的肽聚糖前体的合成被认为是放线菌目成员产生这些药物以及相关土壤细菌对糖肽产生抗性的原因。最近,有研究表明,放线菌目几个成员的肽聚糖是由L,D - 转肽酶交联的,这些酶使用不含糖肽作用靶点的四肽酰基供体。为了评估这些抗性机制的作用,我们确定了天蓝色链霉菌A(3)2和野野村菌属菌株ATCC 39727的肽聚糖结构。天蓝色链霉菌A(3)2含有一个用于生产以D - Lac结尾的前体的vanHAX基因簇,而野野村菌属菌株ATCC 39727不含vanHAX且能产生糖肽A40296。尽管D - Lac有效地掺入了细胞质前体中,但万古霉素对天蓝色链霉菌A(3)2仍保留残余活性。这是由于D,D - 转肽酶催化的反应,该反应通过将D - Lac换成D - Ala和Gly,生成了一种能被糖肽识别的茎部五肽。L,D - 转肽酶对抗性的作用受到四肽酰基供体供应的限制,而四肽酰基供体是这些酶形成肽聚糖交联所必需的。在缺乏细胞质金属D,D - 羧肽酶的情况下,四肽底物是通过在周质中水解茎部五肽脱肽的C末端D - Lac残基产生的,这与D,D - 转肽酶催化的交换反应相互竞争。在野野村菌属菌株ATCC 39727中,尽管产生了细胞质金属D,D - 羧肽酶,但L,D - 转肽酶对糖肽抗性的作用受到五肽向四肽不完全转化的限制。由于药物产生水平超过了抗性水平,我们认为L,D - 转肽酶在这种细菌中仅作为一种耐受机制起作用。