Suppr超能文献

使用温度响应性水饱和度位移参考(T-WASSR)磁共振成像进行无创温度映射。

Non-invasive temperature mapping using temperature-responsive water saturation shift referencing (T-WASSR) MRI.

作者信息

Liu Guanshu, Qin Qin, Chan Kannie W Y, Li Yuguo, Bulte Jeff W M, McMahon Michael T, van Zijl Peter C M, Gilad Assaf A

出版信息

NMR Biomed. 2014 Mar;27(3):320-31. doi: 10.1002/nbm.3066.

Abstract

We present a non-invasive MRI approach for assessing the water proton resonance frequency (PRF) shifts associated with changes in temperature. This method is based on water saturation shift referencing (WASSR), a method first developed for assessing B0 field inhomogeneity. Temperature-induced water PRF shifts were determined by estimating the frequency of the minimum intensity of the water direct saturation spectrum at each temperature using Lorentzian line-shape fitting. The change in temperature was then calculated from the difference in water PRF shifts between temperatures. Optimal acquisition parameters were first estimated using simulations and later confirmed experimentally. Results in vitro and in vivo showed that the temperature changes measured using the temperature-responsive WASSR (T-WASSR) were in good agreement with those obtained with MR spectroscopy or phase-mapping-based water PRF measurement methods,. In addition, the feasibility of temperature mapping in fat-containing tissue is demonstrated in vitro. In conclusion, the T-WASSR approach provides an alternative for non-invasive temperature mapping by MRI, especially suitable for temperature measurements in fat-containing tissues.

摘要

我们提出了一种用于评估与温度变化相关的水质子共振频率(PRF)偏移的非侵入性磁共振成像(MRI)方法。该方法基于水饱和偏移参考(WASSR),这是一种最初为评估B0场不均匀性而开发的方法。通过使用洛伦兹线形拟合估计每个温度下水直接饱和谱的最小强度频率,确定温度诱导的水质子共振频率偏移。然后根据不同温度下水质子共振频率偏移的差异计算温度变化。首先使用模拟估计最佳采集参数,随后通过实验进行确认。体外和体内结果表明,使用温度响应性水饱和偏移参考(T-WASSR)测量的温度变化与通过磁共振波谱或基于相位映射的水质子共振频率测量方法获得的结果高度一致。此外,体外实验证明了在含脂肪组织中进行温度映射的可行性。总之,T-WASSR方法为MRI非侵入性温度映射提供了一种替代方法,特别适用于含脂肪组织中的温度测量。

相似文献

3
Quantitative magnetic susceptibility mapping without phase unwrapping using WASSR.
Neuroimage. 2014 Feb 1;86:265-79. doi: 10.1016/j.neuroimage.2013.09.072. Epub 2013 Oct 8.
4
Multi-echo MR thermometry using iterative separation of baseline water and fat images.
Magn Reson Med. 2019 Apr;81(4):2385-2398. doi: 10.1002/mrm.27567. Epub 2018 Nov 5.
6
Accurate field mapping in the presence of B0 inhomogeneities, applied to MR thermometry.
Magn Reson Med. 2015 Jun;73(6):2142-51. doi: 10.1002/mrm.25338. Epub 2014 Jun 27.
7
A method for measuring B field inhomogeneity using quantitative double-echo in steady-state.
Magn Reson Med. 2023 Feb;89(2):577-593. doi: 10.1002/mrm.29465. Epub 2022 Sep 25.
8
Non-invasive magnetic resonance thermography during regional hyperthermia.
Int J Hyperthermia. 2010;26(3):273-82. doi: 10.3109/02656731003596242.
9
Deep learning-based Lorentzian fitting of water saturation shift referencing spectra in MRI.
Magn Reson Med. 2023 Oct;90(4):1610-1624. doi: 10.1002/mrm.29718. Epub 2023 Jun 6.
10
Comparison of four magnetic resonance methods for mapping small temperature changes.
Phys Med Biol. 1999 Feb;44(2):607-24. doi: 10.1088/0031-9155/44/2/022.

引用本文的文献

1
Dynamic glucose enhanced imaging using direct water saturation.
Magn Reson Med. 2025 Jul;94(1):15-27. doi: 10.1002/mrm.30447. Epub 2025 Mar 17.
3
Development of a synthetic biosensor for chemical exchange MRI utilizing in silico optimized peptides.
NMR Biomed. 2023 Nov;36(11):e5007. doi: 10.1002/nbm.5007. Epub 2023 Jul 19.
4
Deep learning-based Lorentzian fitting of water saturation shift referencing spectra in MRI.
Magn Reson Med. 2023 Oct;90(4):1610-1624. doi: 10.1002/mrm.29718. Epub 2023 Jun 6.
5
Development of a Synthetic Biosensor for Chemical Exchange MRI Utilizing Optimized Peptides.
bioRxiv. 2023 Mar 8:2023.03.08.531737. doi: 10.1101/2023.03.08.531737.
7
Phase-independent thermometry by Z-spectrum MR imaging.
Magn Reson Med. 2022 Apr;87(4):1731-1741. doi: 10.1002/mrm.29072. Epub 2021 Nov 9.
9
Potential surgical therapies for drug-resistant focal epilepsy.
CNS Neurosci Ther. 2021 Jun 7;27(9):994-1011. doi: 10.1111/cns.13690.
10
Electroporation-Based Treatments in Small Animal Veterinary Oral and Maxillofacial Oncology.
Front Vet Sci. 2020 Sep 29;7:575911. doi: 10.3389/fvets.2020.575911. eCollection 2020.

本文引用的文献

1
Nuts and bolts of chemical exchange saturation transfer MRI.
NMR Biomed. 2013 Jul;26(7):810-28. doi: 10.1002/nbm.2899. Epub 2013 Jan 10.
2
Towards fast and accurate temperature mapping with proton resonance frequency-based MR thermometry.
Quant Imaging Med Surg. 2012;2(1):21-32. doi: 10.3978/j.issn.2223-4292.2012.01.06.
3
NOrmalized MAgnetization Ratio (NOMAR) filtering for creation of tissue selective contrast maps.
Magn Reson Med. 2013 Feb;69(2):516-23. doi: 10.1002/mrm.24271. Epub 2012 Apr 12.
4
In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes.
Magn Reson Med. 2012 Apr;67(4):1106-13. doi: 10.1002/mrm.23100. Epub 2011 Aug 23.
5
Keyhole chemical exchange saturation transfer.
Magn Reson Med. 2012 Oct;68(4):1228-33. doi: 10.1002/mrm.23310. Epub 2012 Jan 13.
7
Fast fat-suppressed reduced field-of-view temperature mapping using 2DRF excitation pulses.
J Magn Reson. 2011 May;210(1):38-43. doi: 10.1016/j.jmr.2011.02.004. Epub 2011 Mar 2.
8
CEST-FISP: a novel technique for rapid chemical exchange saturation transfer MRI at 7 T.
Magn Reson Med. 2011 Feb;65(2):432-7. doi: 10.1002/mrm.22637. Epub 2010 Oct 11.
9
Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain.
Magn Reson Med. 2010 Sep;64(3):638-44. doi: 10.1002/mrm.22546.
10
High-throughput screening of chemical exchange saturation transfer MR contrast agents.
Contrast Media Mol Imaging. 2010 May-Jun;5(3):162-70. doi: 10.1002/cmmi.383.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验