Suppr超能文献

一种有效的分裂-重组微混合器,具有自旋转接触表面,适用于宽雷诺数范围的应用。

An effective splitting-and-recombination micromixer with self-rotated contact surface for wide Reynolds number range applications.

机构信息

School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China.

School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China ; School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Biomicrofluidics. 2013 Oct 28;7(5):54121. doi: 10.1063/1.4827598. eCollection 2013.

Abstract

It is difficult to mix two liquids on a microfluidic chip because the small dimensions and velocities effectively prevent the turbulence. This paper describes two 2-layer PDMS passive micromixers based on the concept of splitting and recombining the flow that exploits a self-rotated contact surface to increase the concentration gradients to obtain fast and efficient mixing. The designed micromixers were simulated and the mixing performance was assessed. The mixers have shown excellent mixing efficiency over a wide range of Reynolds number. The mixers were reasonably fabricated by multilayer soft lithography, and the experimental measurements were performed to qualify the mixing performance of the realized mixer. The results show that the mixing efficiency for one realized mixer is from 91.8% to 87.7% when the Reynolds number increases from 0.3 to 60, while the corresponding value for another mixer is from 89.4% to 72.9%. It is rather interesting that the main mechanism for the rapid mixing is from diffusion to chaotic advection when the flow rate increases, but the mixing efficiency has not obvious decline. The smart geometry of the mixers with total length of 10.25 mm makes it possible to be integrated with many microfluidic devices for various applications in μ-TAS and Lab-on-a-chip systems.

摘要

在微流控芯片上混合两种液体很困难,因为小尺寸和低流速会有效地阻止流体混合。本文介绍了两种基于分流和再合流原理的双层 PDMS 被动式微混合器,该原理利用自旋转的接触面来增加浓度梯度,从而实现快速高效的混合。对设计的微混合器进行了模拟和混合性能评估。结果表明,在较宽的雷诺数范围内,混合器都具有出色的混合效率。通过多层软光刻技术合理地制造了混合器,并进行了实验测量以验证混合器的混合性能。实验结果表明,当雷诺数从 0.3 增加到 60 时,一个混合器的混合效率从 91.8%到 87.7%不等,而另一个混合器的混合效率从 89.4%到 72.9%不等。有趣的是,当流速增加时,快速混合的主要机制是从扩散到混沌对流,但混合效率并没有明显下降。混合器的巧妙设计,总长度为 10.25mm,使其可以与许多微流控设备集成,用于 μ-TAS 和芯片实验室系统中的各种应用。

相似文献

2
A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.
Biomicrofluidics. 2016 Jun 27;10(3):034120. doi: 10.1063/1.4954812. eCollection 2016 May.
3
A serpentine laminating micromixer combining splitting/recombination and advection.
Lab Chip. 2005 Jul;5(7):739-47. doi: 10.1039/b418314b. Epub 2005 Apr 26.
4
Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers.
Lab Chip. 2005 Jul;5(7):748-55. doi: 10.1039/b502031j. Epub 2005 May 16.
5
Mixing Performance of a Cost-effective Split-and-Recombine 3D Micromixer Fabricated by Xurographic Method.
Micromachines (Basel). 2019 Nov 16;10(11):786. doi: 10.3390/mi10110786.
6
A Directly Moldable, Highly Compact, and Easy-for-Integration 3D Micromixer with Extraordinary Mixing Performance.
Anal Chem. 2023 Jun 13;95(23):8850-8858. doi: 10.1021/acs.analchem.3c00335. Epub 2023 Jun 1.
7
Mixing Performance of a Planar Asymmetric Contraction-and-Expansion Micromixer.
Micromachines (Basel). 2022 Aug 25;13(9):1386. doi: 10.3390/mi13091386.
8
A Three-Dimensional Micromixer Using Oblique Embedded Ridges.
Micromachines (Basel). 2021 Jul 8;12(7):806. doi: 10.3390/mi12070806.
9
3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances.
Small. 2019 Jan;15(2):e1804326. doi: 10.1002/smll.201804326. Epub 2018 Dec 10.
10
Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber.
Lab Chip. 2004 Feb;4(1):70-7. doi: 10.1039/b310848c. Epub 2003 Dec 4.

引用本文的文献

2
A PDMS-based Microfluidic Chip Assembly for Time-Resolved Cryo-EM (TRCEM) Sample Preparation.
Bio Protoc. 2025 Feb 20;15(4):e5193. doi: 10.21769/BioProtoc.5193.
3
Time-resolved cryo-EM (TRCEM) sample preparation using a PDMS-based microfluidic chip assembly.
bioRxiv. 2024 Dec 9:2024.12.08.627437. doi: 10.1101/2024.12.08.627437.
5
Micromixing within microfluidic devices: Fundamentals, design, and fabrication.
Biomicrofluidics. 2023 Dec 12;17(6):061503. doi: 10.1063/5.0178396. eCollection 2023 Dec.
6
Topology-Optimized Micromixer Design with Enhanced Reverse Flow to Increase Mixing Efficiency.
Micromachines (Basel). 2023 Aug 14;14(8):1599. doi: 10.3390/mi14081599.
7
Modeling and simulation of a split and recombination-based passive micromixer with vortex-generating mixing units.
Heliyon. 2023 Mar 24;9(4):e14745. doi: 10.1016/j.heliyon.2023.e14745. eCollection 2023 Apr.
8
Design and High-Resolution Analysis of an Efficient Periodic Split-and-Recombination Microfluidic Mixer.
Micromachines (Basel). 2022 Oct 12;13(10):1720. doi: 10.3390/mi13101720.
9
A hybrid micromixer with planar mixing units.
RSC Adv. 2018 Sep 25;8(58):33103-33120. doi: 10.1039/c8ra05763j. eCollection 2018 Sep 24.

本文引用的文献

1
Numerical study of a novel induced-charge electrokinetic micro-mixer.
Anal Chim Acta. 2013 Feb 6;763:28-37. doi: 10.1016/j.aca.2012.12.010. Epub 2012 Dec 13.
2
Dielectrophoretic responses of DNA and fluorophore in physiological solution by impedimetric characterization.
Biosens Bioelectron. 2013 Mar 15;41:649-55. doi: 10.1016/j.bios.2012.09.036. Epub 2012 Sep 28.
3
Drop formation in non-planar microfluidic devices.
Lab Chip. 2012 Nov 7;12(21):4263-8. doi: 10.1039/c2lc40546f.
4
Optimization of an electrokinetic mixer for microfluidic applications.
Biomicrofluidics. 2012 Jun;6(2):24123-2412318. doi: 10.1063/1.4722000. Epub 2012 May 24.
5
Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length.
Lab Chip. 2011 Jan 7;11(1):100-3. doi: 10.1039/c005325m. Epub 2010 Oct 11.
6
A simplified design of the staggered herringbone micromixer for practical applications.
Biomicrofluidics. 2010 May 7;4(2):024105. doi: 10.1063/1.3427240.
8
A microfluidic mixer with self-excited 'turbulent' fluid motion for wide viscosity ratio applications.
Lab Chip. 2010 Jul 7;10(13):1712-6. doi: 10.1039/b925025e. Epub 2010 Apr 26.
9
Ultrafast microfluidic mixer with three-dimensional flow focusing for studies of biochemical kinetics.
Lab Chip. 2010 Mar 7;10(5):598-609. doi: 10.1039/b914174j. Epub 2009 Dec 16.
10
Micromixer based on viscoelastic flow instability at low Reynolds number.
Biomicrofluidics. 2009 Mar 30;3(1):14106. doi: 10.1063/1.3108462.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验