Suppr超能文献

微流道中混合增强与周期性电渗流下的收缩相结合。

Mixing enhancement in microfluidic channel with a constriction under periodic electro-osmotic flow.

机构信息

School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue 50, Singapore 639798, Singapore.

出版信息

Biomicrofluidics. 2010 Jan 7;4(1):14101. doi: 10.1063/1.3279790.

Abstract

We present a new approach to enhance mixing in T-type micromixers by introducing a constriction in the microchannel under periodic electro-osmotic flow. Two sinusoidal ac electric fields with 180 degrees phase difference and similar dc bias are applied at the two inlets. The out of phase ac electric field induces oscillation of fluid interface at the junction of the two inlet channels and the constriction. Due to the constriction introduced at the junction, fluids from these two inlets form alternative plugs at the constricted channel. These plugs of fluids radiate downstream from the constriction into the large channel and form alternate thin crescent-shaped layers of fluids. These crescent-shaped layers of fluids increase tremendously the contact surface area between the two streams of fluid and thus enhance significantly the mixing efficiency. Experimental results and mixing mechanism analysis show that amplitude and frequency of the ac electric field and the length of the constriction govern the mixing efficiency.

摘要

我们提出了一种新的方法,通过在周期性电渗流下的微通道中引入收缩来增强 T 型微混合器中的混合。在两个入口处施加具有 180 度相位差和相似直流偏置的两个正弦交流电场。相反的交流电场会在两个入口通道和收缩处的交界处引起流体界面的振荡。由于在交界处引入了收缩,来自这两个入口的流体在收缩通道中形成交替的塞子。这些流体塞从收缩处向下游辐射到较大的通道中,并形成交替的薄新月形流体层。这些新月形流体层大大增加了两种流体之间的接触表面积,从而显著提高了混合效率。实验结果和混合机理分析表明,交流电场的振幅和频率以及收缩的长度控制着混合效率。

相似文献

2
Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers.
Micromachines (Basel). 2018 Apr 27;9(5):204. doi: 10.3390/mi9050204.
3
Enhancement of microfluidic mixing using time pulsing.
Lab Chip. 2003 May;3(2):114-20. doi: 10.1039/b302569a. Epub 2003 Apr 30.
4
Analysis of Passive Mixing in a Serpentine Microchannel with Sinusoidal Side Walls.
Micromachines (Basel). 2017 Dec 28;9(1):8. doi: 10.3390/mi9010008.
7
AC electro-osmotic mixing induced by non-contact external electrodes.
Biosens Bioelectron. 2006 Oct 15;22(4):563-7. doi: 10.1016/j.bios.2006.05.032. Epub 2006 Jul 11.
8
Mixing of non-Newtonian fluids in wavy serpentine microchannel using electrokinetically driven flow.
Electrophoresis. 2012 Mar;33(5):743-50. doi: 10.1002/elps.201100496.
9
Numerical study of active control of mixing in electro-osmotic flows by temperature difference using lattice Boltzmann methods.
J Colloid Interface Sci. 2013 Oct 1;407:546-55. doi: 10.1016/j.jcis.2013.06.026. Epub 2013 Jun 26.
10
Electro-Osmotic Flow and Mass Transfer through a Rough Microchannel with a Modulated Charged Surface.
Micromachines (Basel). 2024 Jul 4;15(7):882. doi: 10.3390/mi15070882.

引用本文的文献

2
Computational Fluid-Structure Interaction in Microfluidics.
Micromachines (Basel). 2024 Jul 9;15(7):897. doi: 10.3390/mi15070897.
3
Bubble-Enhanced Mixing Induced by Standing Surface Acoustic Waves (SSAWs) in Microchannel.
Micromachines (Basel). 2022 Aug 18;13(8):1337. doi: 10.3390/mi13081337.
4
Electrokinetic Mixing for Improving the Kinetics of an HbA1c Immunoassay.
Sci Rep. 2019 Dec 27;9(1):19885. doi: 10.1038/s41598-019-56205-4.
5
Effects of Channel Wall Twisting on the Mixing in a T-Shaped Micro-Channel.
Micromachines (Basel). 2019 Dec 24;11(1):26. doi: 10.3390/mi11010026.
7
3D printed selectable dilution mixer pumps.
Biomicrofluidics. 2019 Jan 30;13(1):014106. doi: 10.1063/1.5070068. eCollection 2019 Jan.
8
Electroosmotic Flow in Microchannel with Black Silicon Nanostructures.
Micromachines (Basel). 2018 May 11;9(5):229. doi: 10.3390/mi9050229.
9
Optimal Control-Based Inverse Determination of Electrode Distribution for Electroosmotic Micromixer.
Micromachines (Basel). 2017 Aug 11;8(8):247. doi: 10.3390/mi8080247.
10
Ionic Origin of Electro-osmotic Flow Hysteresis.
Sci Rep. 2016 Feb 29;6:22329. doi: 10.1038/srep22329.

本文引用的文献

2
Induced charge electro osmotic mixer: Obstacle shape optimization.
Biomicrofluidics. 2009 Jun 30;3(2):22413. doi: 10.1063/1.3167279.
3
DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels.
Lab Chip. 2009 Mar 21;9(6):802-9. doi: 10.1039/b813639d. Epub 2008 Nov 28.
4
Electrophoretic separations of neuromediators on microfluidic devices.
Talanta. 2006 Oct 15;70(3):489-98. doi: 10.1016/j.talanta.2005.12.063. Epub 2006 Feb 21.
5
Electrokinetically-driven flow mixing in microchannels with wavy surface.
J Colloid Interface Sci. 2007 Aug 15;312(2):470-80. doi: 10.1016/j.jcis.2007.03.033. Epub 2007 Mar 24.
6
High-efficiency electrokinetic micromixing through symmetric sequential injection and expansion.
Lab Chip. 2006 Aug;6(8):1033-9. doi: 10.1039/b602085b. Epub 2006 Jun 14.
7
Achieving uniform mixing in a microfluidic device: hydrodynamic focusing prior to mixing.
Anal Chem. 2006 Jul 1;78(13):4465-73. doi: 10.1021/ac060572n.
8
AC electroosmotic micromixer for chemical processing in a microchannel.
Lab Chip. 2006 Apr;6(4):550-4. doi: 10.1039/b515852d. Epub 2006 Feb 14.
9
Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers.
Lab Chip. 2005 Jul;5(7):748-55. doi: 10.1039/b502031j. Epub 2005 May 16.
10
Microfluidic T-form mixer utilizing switching electroosmotic flow.
Anal Chem. 2004 Sep 15;76(18):5265-72. doi: 10.1021/ac0494782.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验