School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
Genetics. 2014 Mar;196(3):841-52. doi: 10.1534/genetics.113.156190. Epub 2014 Jan 7.
The role of adaptation in the evolutionary process has been contentious for decades. At the heart of the century-old debate between neutralists and selectionists lies the distribution of fitness effects (DFE)--that is, the selective effect of all mutations. Attempts to describe the DFE have been varied, occupying theoreticians and experimentalists alike. New high-throughput techniques stand to make important contributions to empirical efforts to characterize the DFE, but the usefulness of such approaches depends on the availability of robust statistical methods for their interpretation. We here present and discuss a Bayesian MCMC approach to estimate fitness from deep sequencing data and use it to assess the DFE for the same 560 point mutations in a coding region of Hsp90 in Saccharomyces cerevisiae across six different environmental conditions. Using these estimates, we compare the differences in the DFEs resulting from mutations covering one-, two-, and three-nucleotide steps from the wild type--showing that multiple-step mutations harbor more potential for adaptation in challenging environments, but also tend to be more deleterious in the standard environment. All observations are discussed in the light of expectations arising from Fisher's geometric model.
适应在进化过程中的作用几十年来一直存在争议。在中立主义者和选择主义者之间长达一个世纪的争论的核心是适应度效应(DFE)的分布,即所有突变的选择效应。描述 DFE 的尝试多种多样,使理论家和实验家都感到困惑。新的高通量技术有望为描述 DFE 的经验研究做出重要贡献,但这些方法的有用性取决于是否有稳健的统计方法来解释它们。我们在这里提出并讨论了一种贝叶斯 MCMC 方法,用于从深度测序数据中估计适应度,并将其用于评估在六个不同环境条件下酿酒酵母中 Hsp90 编码区域的 560 个点突变的 DFE。使用这些估计值,我们比较了从野生型覆盖一个、两个和三个核苷酸步骤的突变产生的 DFE 的差异,表明多步突变在具有挑战性的环境中具有更大的适应潜力,但在标准环境中也往往更具危害性。所有的观察结果都在费希尔的几何模型所产生的期望的背景下进行讨论。