Suppr超能文献

蔷薇果状斑:一种采用位置和均值方差收缩的稳健深度突变扫描分析框架。

Rosace: a robust deep mutational scanning analysis framework employing position and mean-variance shrinkage.

机构信息

Department of Computer Science, UCLA, Los Angeles, CA, USA.

Computational and Systems Biology Interdepartmental Program, UCLA, Los Angeles, CA, USA.

出版信息

Genome Biol. 2024 May 24;25(1):138. doi: 10.1186/s13059-024-03279-7.

Abstract

Deep mutational scanning (DMS) measures the effects of thousands of genetic variants in a protein simultaneously. The small sample size renders classical statistical methods ineffective. For example, p-values cannot be correctly calibrated when treating variants independently. We propose Rosace, a Bayesian framework for analyzing growth-based DMS data. Rosace leverages amino acid position information to increase power and control the false discovery rate by sharing information across parameters via shrinkage. We also developed Rosette for simulating the distributional properties of DMS. We show that Rosace is robust to the violation of model assumptions and is more powerful than existing tools.

摘要

深度突变扫描 (DMS) 可同时测量蛋白质中数千个遗传变异的影响。由于样本量小,经典的统计方法变得无效。例如,当独立处理变体时,无法正确校准 p 值。我们提出了 Rosace,这是一种用于分析基于生长的 DMS 数据的贝叶斯框架。Rosace 利用氨基酸位置信息通过收缩在参数之间共享信息来增加功效并控制假发现率。我们还开发了 Rosette 来模拟 DMS 的分布特性。我们表明 Rosace 对模型假设的违反具有鲁棒性,并且比现有工具更强大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff8f/11127319/40b6f69fd742/13059_2024_3279_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验