Suppr超能文献

开发和评估一种简短的 24 小时食物清单,作为大规模队列研究中混合膳食评估策略的一部分。

Development and evaluation of a short 24-h food list as part of a blended dietary assessment strategy in large-scale cohort studies.

机构信息

1] Nutritional Epidemiology, Department of Nutrition and Food Sciences, University Bonn, Bonn, Germany [2] Section of Epidemiology, Institute of Experimental Medicine, University Kiel, Kiel, Germany.

Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany.

出版信息

Eur J Clin Nutr. 2014 Mar;68(3):324-9. doi: 10.1038/ejcn.2013.274. Epub 2014 Jan 8.

Abstract

BACKGROUND/OBJECTIVES: The validity of dietary assessment in large-scale cohort studies has been questioned. Combining data sources for the estimation of usual intake in a blended approach may enhance the validity of dietary measurement. Our objective was to develop a web-based 24-h food list for Germany to identify foods consumed during the previous 24 h and to evaluate the performance of the new questionnaire in a feasibility study.

SUBJECTS/METHODS: Available data from the German National Nutrition Survey II were used to develop a finite list of food items. A total of 508 individuals were invited to fill in the 24-h food list via the Internet up to three times during a 3-6-month time period. In addition, participants were asked to evaluate the questionnaire using a brief online evaluation form.

RESULTS

In total, 246 food items were identified for the 24-h food list, reflecting >75% variation in intake of 27 nutrients and four major food groups. Among the individuals invited, 64% participated in the feasibility study. Of these, 100%, 85% and 68% of participants completed the 24-h food list one, two or three times, respectively. The average time needed to complete the questionnaire was 9 min, and its acceptability by participants was rated as high.

CONCLUSIONS

The 24-h food list represents a promising new dietary assessment tool that can be used as part of a blended approach combining multiple data sources for valid estimation of usual dietary intake in large-scale cohort studies.

摘要

背景/目的:大型队列研究中的饮食评估有效性受到了质疑。通过混合方法结合数据来源来估计习惯性摄入量可以提高饮食测量的有效性。我们的目的是为德国开发一个基于网络的 24 小时食物清单,以识别过去 24 小时内食用的食物,并在可行性研究中评估新问卷的性能。

受试者/方法:使用德国国家营养调查 II 的可用数据来开发一个有限的食物项目列表。共有 508 人受邀通过互联网在 3-6 个月的时间内填写 24 小时食物清单,最多可填写三次。此外,参与者被要求使用简短的在线评估表来评估问卷。

结果

总共确定了 246 种 24 小时食物清单中的食物,反映了 27 种营养素和四大主要食物组中 75%以上的摄入量变化。在受邀的个体中,64%参与了可行性研究。其中,100%、85%和 68%的参与者分别完成了 24 小时食物清单一次、两次和三次。完成问卷平均需要 9 分钟,参与者对其接受度评价较高。

结论

24 小时食物清单代表了一种有前途的新饮食评估工具,可作为结合多种数据源的混合方法的一部分,用于在大型队列研究中有效估计习惯性饮食摄入量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验