Yuk Inn H, Zhang Jitao David, Ebeling Martin, Berrera Marco, Gomez Natalia, Werz Silke, Meiringer Christoph, Shao Zhixin, Swanberg Jeffrey C, Lee Kelvin H, Luo Jun, Szperalski Berthold
Early Stage Cell Culture, Genentech, 1 DNA Way, South San Francisco, CA , 94080.
Biotechnol Prog. 2014 Mar-Apr;30(2):429-42. doi: 10.1002/btpr.1868. Epub 2014 Jan 21.
Copper concentration can impact lactate metabolism in Chinese Hamster ovary (CHO) cells. In our previous study, a 20-fold increase in initial copper concentration enabled CHO cultures to shift from net lactate production to net lactate consumption, and achieve higher cell growth and productivity. In this follow-up study, we used transcriptomics to investigate the mechanism of action (MOA) of copper that mediates this beneficial metabolism shift. From microarray profiling (days 0-7), the number of differentially expressed genes increased considerably after the lactate shift (>day 3). To uncouple the effects of copper at early time points (days 0-3) from that of lactate per se (>day 3), and to validate microarray hits, we analyzed samples before the lactate shift by RNA-Seq. Out of 6,398 overlapping genes analyzed by both transcriptomic methods, only the early growth response 1 gene-coding for a transcription factor that activates signaling pathways in response to environmental stimuli-satisfied the differential expression criteria (fold change ≥ 1.5; P < 0.05). Gene expression correlation and biological pathway analyses further confirmed that copper differences exerted minimal transcriptional impact on the CHO cultures before the lactate shift. By contrast, genes associated with hypoxia network and oxidative stress response were upregulated after the lactate shift. These upregulations should boost cell proliferation and survival, but do not account for the preceding shift in lactate metabolism. The findings here indicate that the primary MOA of copper that enabled the shift in lactate metabolism is not at the transcriptional level.
铜浓度会影响中国仓鼠卵巢(CHO)细胞中的乳酸代谢。在我们之前的研究中,初始铜浓度增加20倍可使CHO培养物从乳酸净产生转变为乳酸净消耗,并实现更高的细胞生长和生产力。在这项后续研究中,我们使用转录组学来研究介导这种有益代谢转变的铜的作用机制(MOA)。从微阵列分析(第0 - 7天)来看,乳酸转变后(>第3天)差异表达基因的数量大幅增加。为了区分早期时间点(第0 - 3天)铜的作用与乳酸本身(>第3天)的作用,并验证微阵列分析结果,我们通过RNA测序分析了乳酸转变前的样本。在两种转录组学方法分析的6398个重叠基因中,只有早期生长反应1基因(编码一种转录因子,可响应环境刺激激活信号通路)满足差异表达标准(倍数变化≥1.5;P < 0.05)。基因表达相关性和生物途径分析进一步证实,在乳酸转变前,铜差异对CHO培养物的转录影响最小。相比之下,与缺氧网络和氧化应激反应相关的基因在乳酸转变后上调。这些上调应该会促进细胞增殖和存活,但无法解释之前乳酸代谢的转变。此处的研究结果表明,使乳酸代谢发生转变的铜的主要作用机制并非在转录水平。