Suppr超能文献

银纳米棒在模型中诱导了氧化应激和染色体畸变。

Silver nanorods induced oxidative stress and chromosomal aberrations in the model.

机构信息

Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.

School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.

出版信息

IET Nanobiotechnol. 2020 Apr;14(2):161-166. doi: 10.1049/iet-nbt.2019.0224.

Abstract

The production of different size and shape silver nanoparticles (AgNPs) has increased considerably in recent years due to several commercial and biological applications. Here, rod-shaped AgNPs (SNRs) were prepared using the microwave-assisted method and characterised by ultraviolet-visible spectroscopy, and transmission electron microscopy analysis. The present study aims to investigate the cyto-genotoxic effect of various concentrations (5, 10, and 15 µM) of SNRs using model. As a result, concentration-dependent cyto-genotoxic effect of SNRs was observed through a decrease in the mitotic index, and an increase in the chromosomal aberrations such as chromosome break, disturbed metaphase, and anaphase bridge. To check the impact of Ag ions, 15 µM silver nitrate (AgNO) was prepared and tested in all the assays. Furthermore, cell viability and different reactive oxygen species assays were performed to test the cytotoxicity evaluation of SNRs. The authors found that in all the tested assays, SNRs at high concentrations (15 µM) and AgNO (15 µM) were observed to cause maximal damage to the roots. Therefore, the current study implies that the cytotoxicity and genotoxicity of SNRs were dependent on the concentration of SNRs.

摘要

近年来,由于商业和生物应用的需求,不同尺寸和形状的银纳米粒子(AgNPs)的产量大大增加。在这里,使用微波辅助法制备了棒状 AgNPs(SNRs),并通过紫外-可见光谱和透射电子显微镜分析对其进行了表征。本研究旨在使用蚕豆根尖模型,研究不同浓度(5、10 和 15µM)的 SNRs 的细胞遗传毒性效应。结果表明,SNRs 表现出浓度依赖性的细胞遗传毒性效应,表现为有丝分裂指数降低,染色体畸变增加,如染色体断裂、中期干扰和后期桥。为了检查 Ag 离子的影响,制备了 15µM 硝酸银(AgNO)并在所有试验中进行了测试。此外,还进行了细胞活力和不同活性氧物种测定,以测试 SNRs 的细胞毒性评估。作者发现,在所有测试的试验中,高浓度(15µM)的 SNRs 和 AgNO(15µM)被观察到对根尖造成最大的损伤。因此,本研究表明,SNRs 的细胞毒性和遗传毒性取决于 SNRs 的浓度。

相似文献

1
Silver nanorods induced oxidative stress and chromosomal aberrations in the model.
IET Nanobiotechnol. 2020 Apr;14(2):161-166. doi: 10.1049/iet-nbt.2019.0224.
2
Cytogenetic evaluation of gold nanorods using Allium cepa test.
Plant Physiol Biochem. 2016 Dec;109:209-219. doi: 10.1016/j.plaphy.2016.10.003. Epub 2016 Oct 6.
3
Genotoxicity of silver nanoparticles in Allium cepa.
Sci Total Environ. 2009 Sep 15;407(19):5243-6. doi: 10.1016/j.scitotenv.2009.06.024. Epub 2009 Jul 17.
5
Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots.
Ecotoxicol Environ Saf. 2017 Mar;137:18-28. doi: 10.1016/j.ecoenv.2016.11.009. Epub 2016 Dec 19.
6
Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay.
Mutat Res Genet Toxicol Environ Mutagen. 2016 Aug;806:11-23. doi: 10.1016/j.mrgentox.2016.05.006. Epub 2016 Jun 8.
7
Visible-light reduced silver nanoparticles' toxicity in Allium cepa test system.
Environ Pollut. 2020 Feb;257:113551. doi: 10.1016/j.envpol.2019.113551. Epub 2019 Nov 19.
9
Assessment of silver nanoparticles decorated starch and commercial zinc nanoparticles with respect to their genotoxicity on onion.
Int J Biol Macromol. 2019 Jul 15;133:1008-1018. doi: 10.1016/j.ijbiomac.2019.04.134. Epub 2019 Apr 17.
10
MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation.
Mutat Res. 2015 Apr;774:49-58. doi: 10.1016/j.mrfmmm.2015.03.004. Epub 2015 Mar 16.

引用本文的文献

1
Last Fifteen Years of Nanotechnology Application with Our Contribute.
Nanomaterials (Basel). 2025 Feb 10;15(4):265. doi: 10.3390/nano15040265.
2
Effects of Au@Ag core-shell nanostructure with alginate coating on male reproductive system in mice.
Toxicol Rep. 2023 Jan 10;10:104-116. doi: 10.1016/j.toxrep.2023.01.003. eCollection 2023.

本文引用的文献

1
Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence.
Sci Total Environ. 2019 Apr 10;660:459-467. doi: 10.1016/j.scitotenv.2018.12.444. Epub 2019 Jan 2.
2
Cytotoxic and genotoxic effects of silver nanoparticle/carboxymethyl cellulose on Allium cepa.
Environ Monit Assess. 2017 Jul;189(7):352. doi: 10.1007/s10661-017-6062-8. Epub 2017 Jun 24.
3
Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa.
J Hazard Mater. 2017 May 15;330:18-28. doi: 10.1016/j.jhazmat.2017.01.021. Epub 2017 Feb 9.
4
Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots.
Ecotoxicol Environ Saf. 2017 Mar;137:18-28. doi: 10.1016/j.ecoenv.2016.11.009. Epub 2016 Dec 19.
5
Cytogenetic evaluation of gold nanorods using Allium cepa test.
Plant Physiol Biochem. 2016 Dec;109:209-219. doi: 10.1016/j.plaphy.2016.10.003. Epub 2016 Oct 6.
6
Toxicity of CuO Nanoparticles to Structure and Metabolic Activity of Allium cepa Root Tips.
Bull Environ Contam Toxicol. 2016 Nov;97(5):702-708. doi: 10.1007/s00128-016-1934-0. Epub 2016 Oct 4.
7
A silver nanorod resonance rayleigh scattering-energy transfer analytical platform for trace tea polyphenols.
Food Chem. 2016 Apr 15;197(Pt A):395-9. doi: 10.1016/j.foodchem.2015.10.137. Epub 2015 Oct 29.
8
Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip--effects of oxidative stress generation and biouptake.
Environ Sci Pollut Res Int. 2015 Jul;22(14):11057-66. doi: 10.1007/s11356-015-4355-4. Epub 2015 Mar 21.
10
Utilization of triangle nanosilver to prepare spherical nanosilver and quantitatively detect trace titanium by SERS.
Nanoscale Res Lett. 2014 Dec 10;9(1):663. doi: 10.1186/1556-276X-9-663. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验