Sibly Richard M, Baker Joanna, Grady John M, Luna Susan M, Kodric-Brown Astrid, Venditti Chris, Brown James H
School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6AS, United Kingdom;
Biology Department, University of New Mexico, Albuquerque, NM 87131;
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13934-9. doi: 10.1073/pnas.1518823112. Epub 2015 Oct 27.
The fundamental features of growth may be universal, because growth trajectories of most animals are very similar, but a unified mechanistic theory of growth remains elusive. Still needed is a synthetic explanation for how and why growth rates vary as body size changes, both within individuals over their ontogeny and between populations and species over their evolution. Here, we use Bertalanffy growth equations to characterize growth of ray-finned fishes in terms of two parameters, the growth rate coefficient, K, and final body mass, m∞. We derive two alternative empirically testable hypotheses and test them by analyzing data from FishBase. Across 576 species, which vary in size at maturity by almost nine orders of magnitude, K scaled as [Formula: see text]. This supports our first hypothesis that growth rate scales as [Formula: see text] as predicted by metabolic scaling theory; it implies that species that grow to larger mature sizes grow faster as juveniles. Within fish species, however, K scaled as [Formula: see text]. This supports our second hypothesis, which predicts that growth rate scales as [Formula: see text] when all juveniles grow at the same rate. The unexpected disparity between across- and within-species scaling challenges existing theoretical interpretations. We suggest that the similar ontogenetic programs of closely related populations constrain growth to [Formula: see text] scaling, but as species diverge over evolutionary time they evolve the near-optimal [Formula: see text] scaling predicted by metabolic scaling theory. Our findings have important practical implications because fish supply essential protein in human diets, and sustainable yields from wild harvests and aquaculture depend on growth rates.
生长的基本特征可能具有普遍性,因为大多数动物的生长轨迹非常相似,但统一的生长机制理论仍然难以捉摸。对于生长速率如何以及为何会随着个体发育过程中个体体型的变化而变化,以及在种群和物种进化过程中如何变化,仍然需要一个综合的解释。在这里,我们使用贝塔朗菲生长方程,通过两个参数,即生长速率系数K和最终体重m∞,来描述硬骨鱼的生长。我们推导出两个可供实证检验的替代假设,并通过分析鱼类数据库的数据对其进行检验。在576个物种中,成熟时的体型差异近九个数量级,K的缩放比例为[公式:见原文]。这支持了我们的第一个假设,即生长速率按照代谢缩放理论预测的那样,缩放比例为[公式:见原文];这意味着生长到更大成熟体型的物种在幼体阶段生长得更快。然而,在鱼类物种内部,K的缩放比例为[公式:见原文]。这支持了我们的第二个假设,该假设预测当所有幼体以相同速率生长时,生长速率的缩放比例为[公式:见原文]。种间和种内缩放之间意想不到的差异对现有的理论解释提出了挑战。我们认为,亲缘关系密切的种群相似的个体发育程序将生长限制为[公式:见原文]缩放,但随着物种在进化时间上的分化,它们进化出了代谢缩放理论预测的接近最优的[公式:见原文]缩放。我们的发现具有重要的实际意义,因为鱼类是人类饮食中必需蛋白质的来源,野生捕捞和水产养殖的可持续产量取决于生长速率。