Suppr超能文献

一项采用多重基因组测序的基于显微镜的筛选确定了动力蛋白速度的货物特异性需求。

A microscopy-based screen employing multiplex genome sequencing identifies cargo-specific requirements for dynein velocity.

作者信息

Tan Kaeling, Roberts Anthony J, Chonofsky Mark, Egan Martin J, Reck-Peterson Samara L

机构信息

Department of Cell Biology, Harvard Medical School, Boston, MA 02115 Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.

出版信息

Mol Biol Cell. 2014 Mar;25(5):669-78. doi: 10.1091/mbc.E13-09-0557. Epub 2014 Jan 8.

Abstract

The timely delivery of membranous organelles and macromolecules to specific locations within the majority of eukaryotic cells depends on microtubule-based transport. Here we describe a screening method to identify mutations that have a critical effect on intracellular transport and its regulation using mutagenesis, multicolor-fluorescence microscopy, and multiplex genome sequencing. This screen exploits the filamentous fungus Aspergillus nidulans, which has many of the advantages of yeast molecular genetics but uses long-range microtubule-based transport in a manner more similar to metazoan cells. Using this method, we identified seven mutants that represent novel alleles of components of the intracellular transport machinery: specifically, kinesin-1, cytoplasmic dynein, and the dynein regulators Lis1 and dynactin. The two dynein mutations identified in our screen map to dynein's AAA+ catalytic core. Single-molecule studies reveal that both mutations reduce dynein's velocity in vitro. In vivo these mutants severely impair the distribution and velocity of endosomes, a known dynein cargo. In contrast, another dynein cargo, the nucleus, is positioned normally in these mutants. These results reveal that different dynein functions have distinct stringencies for motor performance.

摘要

大多数真核细胞中膜性细胞器和大分子向特定位置的及时运输依赖于基于微管的运输。在此,我们描述了一种筛选方法,该方法利用诱变、多色荧光显微镜和多重基因组测序来鉴定对细胞内运输及其调控有关键影响的突变。此筛选利用丝状真菌构巢曲霉,它具有酵母分子遗传学的许多优点,但以一种更类似于后生动物细胞的方式利用基于微管的长距离运输。使用这种方法,我们鉴定出七个突变体,它们代表细胞内运输机制组分的新等位基因:具体而言,驱动蛋白-1、胞质动力蛋白以及动力蛋白调节因子Lis1和发动蛋白。我们筛选中鉴定出的两个动力蛋白突变定位于动力蛋白的AAA+催化核心。单分子研究表明,这两个突变均降低了动力蛋白在体外的速度。在体内,这些突变体严重损害了内体(一种已知的动力蛋白货物)的分布和速度。相比之下,另一种动力蛋白货物——细胞核,在这些突变体中定位正常。这些结果表明,不同的动力蛋白功能对运动蛋白性能有不同的严格要求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验