Suppr超能文献

基于支柱的微滤器,用于在弹性基底上分离白细胞。

A pillar-based microfilter for isolation of white blood cells on elastomeric substrate.

机构信息

Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

出版信息

Biomicrofluidics. 2013 Jan 9;7(1):14102. doi: 10.1063/1.4774068. eCollection 2013.

Abstract

Our goal is to design, fabricate, and characterize a pillar-based microfluidic device for size-based separation of human blood cells on an elastomeric substrate with application in the low-cost rapid prototyping of lab-chip devices. The single inlet single outlet device is using parallel U-shape arrays of pillars with cutoff size of 5.5 μm for trapping white blood cells (WBCs) in a pillar chamber with internal dead-volume of less than 1.0 μl. The microstructures are designed to limit the elastomeric deformation against fluid pressures. Numerical analysis showed that at maximum pressure loss of 15 kPa which is lower than the device conformal bonding strength, the pillar elastomeric deformation is less than 5% for flow rates of up to 1.0 ml min(-1). Molding technique was employed for device prototyping using polyurethane methacrylate (PUMA) resin and polydimethylsiloxane (PDMS) mold. Characterization of the dual-layer device with beads and blood samples is performed. Tests with blood injection showed that ∼18%-25% of WBCs are trapped and ∼84%-89% of red blood cells (RBCs) are passed at flow rates of 15-50 μl min(-1) with a slight decrease of WBCs trap and improve of the RBCs pass at higher flow rates. Similar results were obtained by separation of mixed microspheres of different size injected at flow rates of up to 400 μl min(-1). Tests with blood samples stained by fluorescent gel demonstrated that the WBCs are accumulated in the arrays of pillars that later end up to blockage of the device. Filtration results of using elastomeric substrate present a good consistency with the trend of separation efficiencies of the similar silicon-based filters.

摘要

我们的目标是设计、制造和表征一种基于柱体的微流控器件,用于在弹性基底上基于尺寸分离人体血细胞,可应用于低成本的实验室芯片设备快速原型制作。该单入口单出口装置使用具有 5.5μm 截止尺寸的平行 U 形柱体阵列,用于在内部死体积小于 1.0μl 的柱体腔内捕获白细胞(WBC)。微结构的设计限制了弹性体对流体压力的变形。数值分析表明,在最大压力损失为 15kPa 的情况下(低于器件的贴合强度),对于高达 1.0ml/min 的流速,柱体弹性体的变形小于 5%。使用聚甲基丙烯酸甲酯(PUMA)树脂和聚二甲基硅氧烷(PDMS)模具采用模塑技术进行器件原型制作。对带有珠子和血液样本的双层器件进行了特性描述。对血液注入的测试表明,在流速为 15-50μl/min 时,约有 18%-25%的 WBC 被捕获,约 84%-89%的 RBC 通过,在较高流速时 WBC 的捕获略有减少,RBC 的通过率有所提高。在高达 400μl/min 的流速下注入不同尺寸的混合微球时,也得到了类似的分离结果。用荧光凝胶染色的血液样本测试表明,WBC 聚集在柱体阵列中,最终导致器件堵塞。使用弹性基底的过滤结果与类似的硅基过滤器的分离效率趋势具有很好的一致性。

相似文献

1
A pillar-based microfilter for isolation of white blood cells on elastomeric substrate.
Biomicrofluidics. 2013 Jan 9;7(1):14102. doi: 10.1063/1.4774068. eCollection 2013.
2
Numerical evaluation and experimental validation of cross-flow microfiltration device design.
Biomed Microdevices. 2019 Feb 21;21(1):21. doi: 10.1007/s10544-019-0378-9.
3
A microfluidic chip for direct and rapid trapping of white blood cells from whole blood.
Biomicrofluidics. 2013 Jun 3;7(3):34106. doi: 10.1063/1.4808179. eCollection 2013.
5
Silicon-based microfilters for whole blood cell separation.
Biomed Microdevices. 2008 Apr;10(2):251-7. doi: 10.1007/s10544-007-9131-x.
8
Clogging-free continuous operation with whole blood in a radial pillar device (RAPID).
Biomed Microdevices. 2018 Aug 17;20(3):75. doi: 10.1007/s10544-018-0319-z.
10
High-Performance Passive Plasma Separation on OSTE Pillar Forest.
Biosensors (Basel). 2021 Sep 25;11(10):355. doi: 10.3390/bios11100355.

引用本文的文献

1
An Open-Type Crossflow Microfluidic Chip for Deformable Droplet Separation Driven by a Centrifugal Field.
Micromachines (Basel). 2025 Jun 30;16(7):774. doi: 10.3390/mi16070774.
4
Nanoporous membrane fabrication by nanoimprint lithography for nanoparticle sieving.
Nanoscale Adv. 2022 Jan 6;4(4):1119-1124. doi: 10.1039/d1na00812a. eCollection 2022 Feb 15.
5
Polymer-Based MEMS Electromagnetic Actuator for Biomedical Application: A Review.
Polymers (Basel). 2020 May 22;12(5):1184. doi: 10.3390/polym12051184.
6
Flow induced particle separation and collection through linear array pillar microfluidics device.
Biomicrofluidics. 2020 Mar 19;14(2):024103. doi: 10.1063/1.5143656. eCollection 2020 Mar.
8
Sorting of Particles Using Inertial Focusing and Laminar Vortex Technology: A Review.
Micromachines (Basel). 2019 Sep 10;10(9):594. doi: 10.3390/mi10090594.
9
Tumor cell capture patterns around aptamer-immobilized microposts in microfluidic devices.
Biomicrofluidics. 2017 Oct 2;11(5):054110. doi: 10.1063/1.5000707. eCollection 2017 Sep.

本文引用的文献

3
Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave.
Biomicrofluidics. 2012 Jun;6(2):24120-2412010. doi: 10.1063/1.4718719. Epub 2012 May 16.
4
Development and validation of a low cost blood filtration element separating plasma from undiluted whole blood.
Biomicrofluidics. 2012 Mar;6(1):12804-128049. doi: 10.1063/1.3672188. Epub 2012 Mar 15.
5
Cell separation and transportation between two miscible fluid streams using ultrasound.
Biomicrofluidics. 2012 Mar;6(1):12802-1280214. doi: 10.1063/1.3671062. Epub 2012 Mar 15.
6
Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation.
Biomicrofluidics. 2011 Sep;5(3):34122-341228. doi: 10.1063/1.3640045. Epub 2011 Sep 21.
7
Formation of embryoid bodies using dielectrophoresis.
Biomicrofluidics. 2012 Jun;6(2):24101-2410111. doi: 10.1063/1.3699969. Epub 2012 Apr 3.
8
Microfluidic separation of viruses from blood cells based on intrinsic transport processes.
Biomicrofluidics. 2011 Sep;5(3):32004-3200410. doi: 10.1063/1.3609262. Epub 2011 Sep 20.
9
High-throughput size-based rare cell enrichment using microscale vortices.
Biomicrofluidics. 2011 Jun;5(2):22206. doi: 10.1063/1.3576780. Epub 2011 Jun 29.
10
Passive optical separation and enrichment of cells by size difference.
Biomicrofluidics. 2010 Dec 6;4(4):44111. doi: 10.1063/1.3523057.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验