Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
Biomicrofluidics. 2013 Jan 9;7(1):14102. doi: 10.1063/1.4774068. eCollection 2013.
Our goal is to design, fabricate, and characterize a pillar-based microfluidic device for size-based separation of human blood cells on an elastomeric substrate with application in the low-cost rapid prototyping of lab-chip devices. The single inlet single outlet device is using parallel U-shape arrays of pillars with cutoff size of 5.5 μm for trapping white blood cells (WBCs) in a pillar chamber with internal dead-volume of less than 1.0 μl. The microstructures are designed to limit the elastomeric deformation against fluid pressures. Numerical analysis showed that at maximum pressure loss of 15 kPa which is lower than the device conformal bonding strength, the pillar elastomeric deformation is less than 5% for flow rates of up to 1.0 ml min(-1). Molding technique was employed for device prototyping using polyurethane methacrylate (PUMA) resin and polydimethylsiloxane (PDMS) mold. Characterization of the dual-layer device with beads and blood samples is performed. Tests with blood injection showed that ∼18%-25% of WBCs are trapped and ∼84%-89% of red blood cells (RBCs) are passed at flow rates of 15-50 μl min(-1) with a slight decrease of WBCs trap and improve of the RBCs pass at higher flow rates. Similar results were obtained by separation of mixed microspheres of different size injected at flow rates of up to 400 μl min(-1). Tests with blood samples stained by fluorescent gel demonstrated that the WBCs are accumulated in the arrays of pillars that later end up to blockage of the device. Filtration results of using elastomeric substrate present a good consistency with the trend of separation efficiencies of the similar silicon-based filters.
我们的目标是设计、制造和表征一种基于柱体的微流控器件,用于在弹性基底上基于尺寸分离人体血细胞,可应用于低成本的实验室芯片设备快速原型制作。该单入口单出口装置使用具有 5.5μm 截止尺寸的平行 U 形柱体阵列,用于在内部死体积小于 1.0μl 的柱体腔内捕获白细胞(WBC)。微结构的设计限制了弹性体对流体压力的变形。数值分析表明,在最大压力损失为 15kPa 的情况下(低于器件的贴合强度),对于高达 1.0ml/min 的流速,柱体弹性体的变形小于 5%。使用聚甲基丙烯酸甲酯(PUMA)树脂和聚二甲基硅氧烷(PDMS)模具采用模塑技术进行器件原型制作。对带有珠子和血液样本的双层器件进行了特性描述。对血液注入的测试表明,在流速为 15-50μl/min 时,约有 18%-25%的 WBC 被捕获,约 84%-89%的 RBC 通过,在较高流速时 WBC 的捕获略有减少,RBC 的通过率有所提高。在高达 400μl/min 的流速下注入不同尺寸的混合微球时,也得到了类似的分离结果。用荧光凝胶染色的血液样本测试表明,WBC 聚集在柱体阵列中,最终导致器件堵塞。使用弹性基底的过滤结果与类似的硅基过滤器的分离效率趋势具有很好的一致性。