Suppr超能文献

基于固有传输过程的从血液细胞中分离病毒的微流控。

Microfluidic separation of viruses from blood cells based on intrinsic transport processes.

机构信息

Department of Materials Science and Engineering and Program of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA.

出版信息

Biomicrofluidics. 2011 Sep;5(3):32004-3200410. doi: 10.1063/1.3609262. Epub 2011 Sep 20.

Abstract

Clinical analysis of acute viral infection in blood requires the separation of viral particles from blood cells, since the cytoplasmic enzyme inhibits the subsequent viral detection. To facilitate this procedure in settings without access to a centrifuge, we present a microfluidic device to continuously purify bionanoparticles from cells based on their different intrinsic movements on the microscale. In this device, a biological sample is layered on top of a physiological buffer, and both fluids are transported horizontally at the same flow rate in a straight channel under laminar flow. While the micron sized particles such as cells sediment to the bottom layer with a predictable terminal velocity, the nanoparticles move vertically by diffusion. As their vertical travel distances have a different dependence on time, the micro- and nanoparticles can preferentially reside in the bottom and top layers respectively after certain residence time, yielding purified viruses. We first performed numerical analysis to predicate the particle separation and then tested the theory using suspensions of synthetic particles and biological samples. The experimental results using dilute synthetic particles closely matched the numerical analysis of a two layer flow system containing different sized particles. Similar purification was achieved using diluted blood spiked with human immunodeficiency virus. However, viral purification in whole blood is compromised due to extensive bioparticle collisions. With the parallelization and automation potential offered by microfluidics, this device has the potential to function as an upstream sample preparation module to continuously provide cell depleted bio-nanoparticles for downstream analysis.

摘要

临床分析血液中的急性病毒感染需要将病毒颗粒从血细胞中分离出来,因为细胞质酶会抑制随后的病毒检测。为了在没有离心机的环境中方便进行此操作,我们提出了一种微流控装置,该装置基于细胞在微尺度上的不同内在运动,连续从细胞中纯化生物纳米颗粒。在该装置中,生物样品位于生理缓冲液的顶部,并且两种流体在层流下以相同的流速在直通道中水平输送。虽然微米大小的颗粒(如细胞)以可预测的终端速度沉降到底层,但纳米颗粒通过扩散垂直移动。由于它们的垂直行进距离随时间的不同而不同,因此在一定的停留时间后,微纳米颗粒可以分别优先存在于底层和顶层,从而得到纯化的病毒。我们首先进行了数值分析以预测颗粒分离,然后使用合成颗粒和生物样品的悬浮液对理论进行了测试。使用稀释的合成颗粒进行的实验结果与包含不同大小颗粒的两层流系统的数值分析非常吻合。使用稀释的血液(掺入人类免疫缺陷病毒)也实现了类似的纯化。但是,由于广泛的生物颗粒碰撞,全血中的病毒纯化受到了影响。借助微流控提供的并行化和自动化潜力,该装置有可能作为上游样品制备模块,连续提供耗尽细胞的生物纳米颗粒,以供下游分析使用。

相似文献

6
High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.利用惯性微流控技术从全血中高通量分离白细胞。
IEEE Trans Biomed Circuits Syst. 2017 Dec;11(6):1422-1430. doi: 10.1109/TBCAS.2017.2735440. Epub 2017 Aug 29.

引用本文的文献

本文引用的文献

7
A fully automated immunoassay from whole blood on a disc.一种基于圆盘的全血全自动免疫测定法。
Lab Chip. 2009 Jun 7;9(11):1548-55. doi: 10.1039/b820321k. Epub 2009 Mar 5.
10
Microvortex for focusing, guiding and sorting of particles.用于粒子聚焦、引导和分选的微涡旋。
Lab Chip. 2008 Dec;8(12):2128-34. doi: 10.1039/b813434k. Epub 2008 Oct 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验