Suppr超能文献

利用驻波声场在微流控通道中对被包封细胞进行密度依赖的分离。

Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave.

出版信息

Biomicrofluidics. 2012 Jun;6(2):24120-2412010. doi: 10.1063/1.4718719. Epub 2012 May 16.

Abstract

This study presents a method for density-based separation of monodisperse encapsulated cells using a standing surface acoustic wave (SSAW) in a microchannel. Even though monodisperse polymer beads can be generated by the state-of-the-art technology in microfluidics, the quantity of encapsulated cells cannot be controlled precisely. In the present study, mono-disperse alginate beads in a laminar flow can be separated based on their density using acoustophoresis. A mixture of beads of equal sizes but dissimilar densities was hydrodynamically focused at the entrance and then actively driven toward the sidewalls by a SSAW. The lateral displacement of a bead is proportional to the density of the bead, i.e., the number of encapsulated cells in an alginate bead. Under optimized conditions, the recovery rate of a target bead group (large-cell-quantity alginate beads) reached up to 97% at a rate of 2300 beads per minute. A cell viability test also confirmed that the encapsulated cells were hardly damaged by the acoustic force. Moreover, cell-encapsulating beads that were cultured for 1 day were separated in a similar manner. In conclusion, this study demonstrated that a SSAW can successfully separate monodisperse particles by their density. With the present technique for separating cell-encapsulating beads, the current cell engineering technology can be significantly advanced.

摘要

本研究提出了一种使用微通道中的驻波表面声波(SSAW)对单分散包封细胞进行密度分离的方法。尽管通过微流控技术可以生成单分散的聚合物珠,但无法精确控制包封细胞的数量。在本研究中,可以基于声泳作用通过密度对层流中的单分散藻酸盐珠进行分离。具有相等尺寸但不同密度的珠的混合物在入口处被水动力聚焦,然后通过 SSAW 主动驱动到侧壁。珠的横向位移与珠的密度成正比,即藻酸盐珠中包封的细胞数量。在优化条件下,目标珠组(含大量细胞的藻酸盐珠)的回收率高达 97%,每分钟可回收 2300 个珠。细胞活力测试也证实,声力几乎不会对包封的细胞造成损伤。此外,培养 1 天后的细胞包封珠也以类似的方式进行了分离。总之,本研究表明 SSAW 可以成功地根据密度分离单分散颗粒。使用这种分离细胞包封珠的技术,可以显著推进当前的细胞工程技术。

相似文献

1
Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave.
Biomicrofluidics. 2012 Jun;6(2):24120-2412010. doi: 10.1063/1.4718719. Epub 2012 May 16.
2
Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
Lab Chip. 2009 Dec 7;9(23):3354-9. doi: 10.1039/b915113c. Epub 2009 Oct 12.
3
4
Standing surface acoustic wave (SSAW)-based cell washing.
Lab Chip. 2015 Jan 7;15(1):331-8. doi: 10.1039/c4lc00903g.
5
Experimental and numerical studies on standing surface acoustic wave microfluidics.
Lab Chip. 2016 Feb 7;16(3):515-24. doi: 10.1039/c5lc00707k.
10
Radiation dominated acoustophoresis driven by surface acoustic waves.
J Colloid Interface Sci. 2015 Oct 1;455:203-11. doi: 10.1016/j.jcis.2015.05.011. Epub 2015 Jun 3.

引用本文的文献

1
A sticky situation - simple method for rapid poissonian encapsulation of highly aggregation-prone microbeads in polydisperse emulsions.
Front Bioeng Biotechnol. 2025 Jun 30;13:1568027. doi: 10.3389/fbioe.2025.1568027. eCollection 2025.
2
Droplet acoustofluidics: Recent progress and challenges.
Biomicrofluidics. 2025 Jun 4;19(3):031502. doi: 10.1063/5.0261531. eCollection 2025 May.
3
Effects of Shear and Extensional Stresses on Cells: Investigation in a Spiral Microchannel and Contraction-Expansion Arrays.
ACS Biomater Sci Eng. 2025 Jun 9;11(6):3249-3261. doi: 10.1021/acsbiomaterials.5c00555. Epub 2025 May 28.
4
A Review of SAW-Based Micro- and Nanoparticle Manipulation in Microfluidics.
Sensors (Basel). 2025 Mar 4;25(5):1577. doi: 10.3390/s25051577.
5
The use of droplet-based microfluidic technologies for accelerated selection of and yeast mutants.
Biol Methods Protoc. 2024 Jul 10;9(1):bpae049. doi: 10.1093/biomethods/bpae049. eCollection 2024.
6
Evaluation of Acoustophoretic and Dielectrophoretic Forces for Droplet Injection in Droplet-Based Microfluidic Devices.
ACS Omega. 2024 Mar 28;9(14):16097-16105. doi: 10.1021/acsomega.3c09881. eCollection 2024 Apr 9.
7
Investigation on submicron particle separation and deflection using tilted-angle standing surface acoustic wave microfluidics.
Heliyon. 2024 Jan 29;10(3):e25042. doi: 10.1016/j.heliyon.2024.e25042. eCollection 2024 Feb 15.
8
An model of cancer invasion with heterogeneous ECM created with droplet microfluidics.
Front Bioeng Biotechnol. 2023 Nov 23;11:1267021. doi: 10.3389/fbioe.2023.1267021. eCollection 2023.
9
Water-in-water droplet microfluidics: A design manual.
Biomicrofluidics. 2022 Nov 17;16(6):061503. doi: 10.1063/5.0119316. eCollection 2022 Dec.
10
Single-Cell Microgels for Diagnostics and Therapeutics.
Adv Funct Mater. 2021 Oct 26;31(44). doi: 10.1002/adfm.202009946. Epub 2021 Mar 26.

本文引用的文献

1
Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics.
Biomicrofluidics. 2011 Dec;5(4):44107-441079. doi: 10.1063/1.3661129. Epub 2011 Nov 14.
2
Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves.
Biomicrofluidics. 2011 Dec;5(4):44104-4410410. doi: 10.1063/1.3652872. Epub 2011 Oct 20.
3
Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
Lab Chip. 2011 Oct 7;11(19):3361-4. doi: 10.1039/c1lc20346k. Epub 2011 Aug 15.
4
3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body.
Lab Chip. 2011 Mar 7;11(5):874-82. doi: 10.1039/c0lc00516a. Epub 2011 Jan 19.
7
Potential and bottlenecks of bioreactors in 3D cell culture and tissue manufacturing.
Adv Mater. 2009 Sep 4;21(32-33):3352-67. doi: 10.1002/adma.200802748.
8
Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet.
Lab Chip. 2010 Nov 7;10(21):2979-85. doi: 10.1039/c004822d. Epub 2010 Aug 24.
9
Advanced microfluidic droplet manipulation based on piezoelectric actuation.
Biomed Microdevices. 2010 Oct;12(5):907-14. doi: 10.1007/s10544-010-9445-y.
10
Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening.
Biomed Microdevices. 2010 Aug;12(4):647-54. doi: 10.1007/s10544-010-9417-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验