Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong.
J Chem Phys. 2014 Jan 7;140(1):011102. doi: 10.1063/1.4861002.
We have measured the absolute integral cross sections (σ's) for H3O(+) formed by the reaction of rovibrationally selected H2O(+)(X(2)B1; v1 (+)v2 (+)v3 (+) = 000; N(+) K a (+) K c (+) = 000, 111, and 211) ion with H2 at the center-of-mass collision energy (Ecm) range of 0.03-10.00 eV. The σ(000), σ(111), and σ(211) values thus obtained reveal rotational enhancements at low Ecm < 0.50 eV, in agreement with the observation of the previous study of the H2O(+)(X(2)B1) + D2 reaction. This Communication presents important progress concerning the high-level ab initio quantum calculation of the potential energy surface for the H2O(+)(X(2)B1) + H2 (D2) reactions, which has provided valuable insight into the origin of the rotational enhancement effect. Governed by the charge and dipole-induced-multipole interactions, the calculation shows that H2 (D2) approaches the H end of H2O(+)(X(2)B1) in the long range, whereas chemical force in the short range favors the orientation of H2 (D2) toward the O side of H2O(+). The reorientation of H2O(+) reactant ion facilitated by rotational excitation thus promotes the H2O(+) + H2 (D2) reaction along the minimum energy pathway, rendering the observed rotational enhancement effects. The occurrence of this effect at low Ecm indicates that the long range charge and dipole-induced-multipole interactions of the colliding pair play a significant role in the dynamics of the exothermic H2O(+) + H2 (D2) reactions.
我们已经测量了通过反应形成的 H3O(+) 的绝对积分截面(σ),其中 H2O(+)(X(2)B1; v1 (+)v2 (+)v3 (+) = 000; N(+) K a (+) K c (+) = 000, 111, 和 211)离子与 H2 在质心碰撞能量(Ecm)范围为 0.03-10.00 eV。因此,获得的 σ(000)、σ(111) 和 σ(211) 值在低 Ecm < 0.50 eV 时显示出旋转增强,这与之前对 H2O(+)(X(2)B1) + D2 反应的观察结果一致。本通讯介绍了关于 H2O(+)(X(2)B1) + H2(D2)反应的高精度从头算量子计算势能表面的重要进展,这为旋转增强效应的起源提供了有价值的见解。由电荷和偶极诱导多极相互作用控制,计算表明 H2(D2)在长程上接近 H2O(+)(X(2)B1)的 H 端,而短程中的化学力有利于 H2(D2)朝向 H2O(+)的 O 侧的取向。通过旋转激发促进的 H2O(+)反应物离子的重定向因此促进了 H2O(+) + H2(D2)反应沿着最小能量途径进行,从而产生了观察到的旋转增强效应。这种效应在低 Ecm 时的发生表明,碰撞对的长程电荷和偶极诱导多极相互作用在放热 H2O(+) + H2(D2)反应的动力学中起着重要作用。