Song Hongwei, Li Anyang, Guo Hua, Xu Yuntao, Xiong Bo, Chang Yih-Chung, Ng C Y
Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
Department of Chemistry, University of California, Davis, CA 95616, USA.
Phys Chem Chem Phys. 2016 Aug 10;18(32):22509-15. doi: 10.1039/c6cp04598g.
To understand the dynamics of H3O(+) formation, we report a combined experimental-theoretical study of the rovibrationally state-selected ion-molecule reactions H2O(+)(X(2)B1; v1(+)v2(+)v3(+); NKa(+)Kc(+)(+)) + H2 (D2) → H3O(+) (H2DO(+)) + H (D), where (v1(+)v2(+)v3(+)) = (000), (020), and (100) and NKa(+)Kc(+)(+) = 000, 111, and 211. Both quantum dynamics and quasi-classical trajectory calculations were carried out on an accurate full-dimensional ab initio global potential energy surface, which involves nine degrees of freedom. The theoretical results are in good agreement with experimental measurements of the initial state specific integral cross-sections for the formation of H3O(+) (H2DO(+)) and thus provide valuable insights into the surprising rotational enhancement and vibrational inhibition effects in these prototypical ion-molecule reactions that play a key role in the interstellar generation of OH and H2O species.
为了理解H3O(+)形成的动力学过程,我们报告了一项关于振转态选择离子 - 分子反应H2O(+)(X(2)B1; v1(+)v2(+)v3(+); NKa(+)Kc(+)(+)) + H2 (D2) → H3O(+) (H2DO(+)) + H (D)的实验 - 理论联合研究,其中(v1(+)v2(+)v3(+)) = (000)、(020)和(100),NKa(+)Kc(+)(+) = 000、111和211。量子动力学和准经典轨迹计算均在一个精确的全维从头算全局势能面上进行,该势能面涉及九个自由度。理论结果与H3O(+) (H2DO(+))形成的初始态特定积分截面的实验测量结果高度吻合,从而为这些在星际OH和H2O物种生成中起关键作用的典型离子 - 分子反应中令人惊讶的转动增强和振动抑制效应提供了有价值的见解。