Kumar Sunil S, Grussie Florian, Suleimanov Yury V, Guo Hua, Kreckel Holger
Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany.
Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi Street, Nicosia 2121, Cyprus.
Sci Adv. 2018 Jun 22;4(6):eaar3417. doi: 10.1126/sciadv.aar3417. eCollection 2018 Jun.
The gas-phase formation of water molecules in the diffuse interstellar medium (ISM) proceeds mainly via a series of reactions involving the molecular ions OH, HO, and HO and molecular hydrogen. These reactions form the backbone for the chemistry leading to the formation of several complex molecular species in space. A comprehensive understanding of the mechanisms involved in these reactions in the ISM necessitates an accurate knowledge of the rate coefficients at the relevant temperatures (10 to 100 K). We present measurements of the rate coefficients for two key reactions below 100 K, which, in both cases, are significantly higher than the values used in astronomical models thus far. The experimental rate coefficients show excellent agreement with dedicated theoretical calculations using a novel ring-polymer molecular dynamics approach that offers a first-principles treatment of low-temperature barrierless gas-phase reactions, which are prevalent in interstellar chemical networks.
在弥漫星际介质(ISM)中,水分子的气相形成主要通过一系列涉及分子离子OH、HO和HO以及分子氢的反应进行。这些反应构成了导致太空中几种复杂分子物种形成的化学过程的主干。要全面理解ISM中这些反应所涉及的机制,就需要准确了解相关温度(10至100K)下的速率系数。我们给出了100K以下两个关键反应的速率系数测量结果,在这两种情况下测得的值都明显高于迄今为止天文模型中所使用的值。实验测得的速率系数与使用新型环聚合物分子动力学方法进行的专门理论计算结果高度吻合,该方法为星际化学网络中普遍存在的低温无势垒气相反应提供了第一性原理处理。