Suppr超能文献

在单一游动微生物中存在两种极端的纤毛运动反应证据。

Evidence for two extremes of ciliary motor response in a single swimming microorganism.

机构信息

Department of Physics, Brown University, Providence, Rhode Island.

Department of Physics, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island.

出版信息

Biophys J. 2014 Jan 7;106(1):106-13. doi: 10.1016/j.bpj.2013.11.3703.

Abstract

Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsible for nutrient uptake respond to changes in their mechanical environment accomplished by varying the fluid viscosity over a factor of 7. Analysis with a phenomenological model of trajectories of swimmers made neutrally buoyant with magnetic forces combined with high-speed imaging of ciliary beating reveal that the body cilia exert a nearly constant propulsive force primarily by reducing their beat frequency as viscosity increases. By contrast, the oral-groove cilia beat at a nearly constant frequency. The existence of two extremes of motor response in a unicellular organism prompts unique investigations of factors controlling ciliary beating.

摘要

由于运动纤毛的阵列可以驱动多种过程中的流体运动,因此协调它们的多功能机械化学机制一直受到关注。原生动物草履虫为比较纤毛群体执行两种不同功能(游泳推进和营养吸收)的方式提供了机会。我们展示了负责推进的身体纤毛和负责营养吸收的口沟纤毛如何响应机械环境变化,这种变化通过将流体粘度改变 7 倍来实现。通过用磁力使中性浮力游泳者的轨迹进行现象学模型分析,并结合高速拍摄纤毛的拍打运动,我们发现,随着粘度的增加,身体纤毛主要通过降低拍打频率来施加几乎恒定的推进力。相比之下,口沟纤毛以几乎恒定的频率拍打。在单细胞生物中存在两种极端的运动反应,这促使人们对控制纤毛拍打运动的因素进行独特的研究。

相似文献

1
Evidence for two extremes of ciliary motor response in a single swimming microorganism.
Biophys J. 2014 Jan 7;106(1):106-13. doi: 10.1016/j.bpj.2013.11.3703.
3
Paramecium swimming and ciliary beating patterns: a study on four RNA interference mutations.
Integr Biol (Camb). 2015 Jan;7(1):90-100. doi: 10.1039/c4ib00181h.
4
Aligning Paramecium caudatum with static magnetic fields.
Biophys J. 2006 Apr 15;90(8):3004-11. doi: 10.1529/biophysj.105.071704. Epub 2006 Feb 3.
5
, a Model to Study Ciliary Beating and Ciliogenesis: Insights From Cutting-Edge Approaches.
Front Cell Dev Biol. 2022 Mar 14;10:847908. doi: 10.3389/fcell.2022.847908. eCollection 2022.
6
Estimation of effective concentrations of ATP-regenerating enzymes in cilia of Paramecium caudatum.
J Eukaryot Microbiol. 2012 Jan-Feb;59(1):49-53. doi: 10.1111/j.1550-7408.2011.00594.x. Epub 2011 Nov 17.
7
Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications.
Bioinspir Biomim. 2013 Dec;8(4):046004. doi: 10.1088/1748-3182/8/4/046004. Epub 2013 Oct 8.
8
An integrative computational model of multiciliary beating.
Bull Math Biol. 2008 May;70(4):1192-215. doi: 10.1007/s11538-008-9296-3. Epub 2008 Jan 31.
10
ATP-regenerating system in the cilia of Paramecium caudatum.
J Exp Biol. 2001 Mar;204(Pt 6):1063-71. doi: 10.1242/jeb.204.6.1063.

引用本文的文献

1
Bioinspired magnetic cilia: from materials to applications.
Microsyst Nanoeng. 2023 Dec 13;9:153. doi: 10.1038/s41378-023-00611-2. eCollection 2023.
2
An electrophysiological and kinematic model of Paramecium, the "swimming neuron".
PLoS Comput Biol. 2023 Feb 9;19(2):e1010899. doi: 10.1371/journal.pcbi.1010899. eCollection 2023 Feb.
3
Walking is like slithering: A unifying, data-driven view of locomotion.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2113222119. doi: 10.1073/pnas.2113222119. Epub 2022 Sep 6.
5
The bank of swimming organisms at the micron scale (BOSO-Micro).
PLoS One. 2021 Jun 10;16(6):e0252291. doi: 10.1371/journal.pone.0252291. eCollection 2021.
6
Integrative Neuroscience of , a "Swimming Neuron".
eNeuro. 2021 Jun 7;8(3). doi: 10.1523/ENEURO.0018-21.2021. Print 2021 May-Jun.
7
Fovea-like Photoreceptor Specializations Underlie Single UV Cone Driven Prey-Capture Behavior in Zebrafish.
Neuron. 2020 Jul 22;107(2):320-337.e6. doi: 10.1016/j.neuron.2020.04.021. Epub 2020 May 29.
8
Polarity in Ciliate Models: From Cilia to Cell Architecture.
Front Cell Dev Biol. 2019 Oct 18;7:240. doi: 10.3389/fcell.2019.00240. eCollection 2019.
9
Swimming eukaryotic microorganisms exhibit a universal speed distribution.
Elife. 2019 Jul 16;8:e44907. doi: 10.7554/eLife.44907.
10
Mobile Diagnostics Based on Motion? A Close Look at Motility Patterns in the Schistosome Life Cycle.
Diagnostics (Basel). 2016 Jun 17;6(2):24. doi: 10.3390/diagnostics6020024.

本文引用的文献

1
Outer dynein arm light chain 1 is essential for controlling the ciliary response to cyclic AMP in Paramecium tetraurelia.
Eukaryot Cell. 2012 May;11(5):645-53. doi: 10.1128/EC.05279-11. Epub 2012 Mar 16.
2
Accumulation of swimming bacteria near a solid surface.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Oct;84(4 Pt 1):041932. doi: 10.1103/PhysRevE.84.041932. Epub 2011 Oct 28.
3
Transitions between three swimming gaits in Paramecium escape.
Proc Natl Acad Sci U S A. 2011 May 3;108(18):7290-5. doi: 10.1073/pnas.1016687108. Epub 2011 Apr 4.
4
The mechanics of gravitaxis in Paramecium.
J Exp Biol. 2010 Dec 15;213(Pt 24):4158-62. doi: 10.1242/jeb.050666.
5
An outer arm Dynein conformational switch is required for metachronal synchrony of motile cilia in planaria.
Mol Biol Cell. 2010 Nov 1;21(21):3669-79. doi: 10.1091/mbc.E10-04-0373. Epub 2010 Sep 15.
6
Force generation and dynamics of individual cilia under external loading.
Biophys J. 2010 Jan 6;98(1):57-66. doi: 10.1016/j.bpj.2009.09.048.
7
The effect of viscous loading on brain ependymal cilia.
Neurosci Lett. 2008 Jul 4;439(1):56-60. doi: 10.1016/j.neulet.2008.04.095. Epub 2008 May 2.
8
An integrative computational model of multiciliary beating.
Bull Math Biol. 2008 May;70(4):1192-215. doi: 10.1007/s11538-008-9296-3. Epub 2008 Jan 31.
9
Theory of swimming filaments in viscoelastic media.
Phys Rev Lett. 2007 Dec 21;99(25):258101. doi: 10.1103/PhysRevLett.99.258101. Epub 2007 Dec 19.
10
Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia.
Biophys J. 2007 Mar 15;92(6):1900-17. doi: 10.1529/biophysj.106.084897. Epub 2006 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验