Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, Australia.
Surgical Diagnostics, Roseville, New South Wales, Australia.
Biophys J. 2014 Jan 7;106(1):182-9. doi: 10.1016/j.bpj.2013.11.1121.
In this work, we present experimental data, supported by a quantitative model, on the generation and effect of potential gradients across a tethered bilayer lipid membrane (tBLM) with, to the best of our knowledge, novel architecture. A challenge to generating potential gradients across tBLMs arises from the tethering coordination chemistry requiring an inert metal such as gold, resulting in any externally applied voltage source being capacitively coupled to the tBLM. This in turn causes any potential across the tBLM assembly to decay to zero in milliseconds to seconds, depending on the level of membrane conductance. Transient voltages applied to tBLMs by pulsed or ramped direct-current amperometry can, however, provide current-voltage (I/V) data that may be used to measure the voltage dependency of the membrane conductance. We show that potential gradients >~150 mV induce membrane defects that permit the insertion of pore-forming peptides. Further, we report here the novel (to our knowledge) use of real-time modeling of conventional low-voltage alternating-current impedance spectroscopy to identify whether the conduction arising from the insertion of a polypeptide is uniform or heterogeneous on scales of nanometers to micrometers across the membrane. The utility of this tBLM architecture and these techniques is demonstrated by characterizing the resulting conduction properties of the antimicrobial peptide PGLa.
在这项工作中,我们提供了实验数据,并辅以定量模型,研究了具有新颖结构的束缚双层脂质膜(tBLM)中电势梯度的产生和影响。在 tBLM 上产生电势梯度的一个挑战源于束缚配位化学需要惰性金属(如金),这导致任何外部施加的电压源都与 tBLM 电容耦合。这反过来又导致 tBLM 组件上的任何电势在毫秒到秒的时间内衰减到零,具体取决于膜电导的水平。然而,通过脉冲或斜坡直流安培法施加到 tBLM 的瞬态电压可以提供电流-电压(I/V)数据,可用于测量膜电导的电压依赖性。我们表明,>~150 mV 的电势梯度会诱导膜缺陷,从而允许插入孔形成肽。此外,我们在这里报告了一种新颖的(据我们所知)使用实时建模的传统低电压交流阻抗谱来识别插入多肽引起的传导是均匀的还是纳米到微米尺度上的膜上的不均匀。这种 tBLM 架构和这些技术的实用性通过表征抗菌肽 PGLa 的传导特性得到了证明。