Suppr超能文献

色散介质中的高斯剪切波。

The Gaussian shear wave in a dispersive medium.

作者信息

Parker Kevin J, Baddour Natalie

机构信息

Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York, USA.

Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada.

出版信息

Ultrasound Med Biol. 2014 Apr;40(4):675-84. doi: 10.1016/j.ultrasmedbio.2013.10.023. Epub 2014 Jan 10.

Abstract

In "imaging the biomechanical properties of tissues," a number of approaches analyze shear wave propagation initiated by a short radiation force push. Unfortunately, it has been experimentally observed that the displacement-versus-time curves for lossy tissues are rapidly damped and distorted in ways that can confound simple tracking approaches. This article addresses the propagation, decay and distortion of pulses in lossy and dispersive media, to derive closed-form analytic expressions for the propagating pulses. The theory identifies key terms that drive the distortion and broadening of the pulse. Furthermore, the approach taken is not dependent on any particular viscoelastic model of tissue, but instead takes a general first-order approach to dispersion. Examples with a Gaussian beam pattern and realistic dispersion parameters are given along with general guidelines for identifying the features of the distorting wave that are the most compact.

摘要

在“组织生物力学特性成像”中,有多种方法可分析由短辐射力推动引发的剪切波传播。遗憾的是,实验观察发现,有损组织的位移-时间曲线会迅速衰减并扭曲,其方式可能会使简单的跟踪方法变得复杂。本文探讨有损和色散介质中脉冲的传播、衰减和畸变,以推导传播脉冲的闭式解析表达式。该理论确定了驱动脉冲畸变和展宽的关键项。此外,所采用的方法不依赖于任何特定的组织粘弹性模型,而是采用一般的一阶色散方法。给出了高斯光束模式和实际色散参数的示例,以及识别最紧凑畸变波特征的一般准则。

相似文献

1
The Gaussian shear wave in a dispersive medium.
Ultrasound Med Biol. 2014 Apr;40(4):675-84. doi: 10.1016/j.ultrasmedbio.2013.10.023. Epub 2014 Jan 10.
2
Comparison of fractional wave equations for power law attenuation in ultrasound and elastography.
Ultrasound Med Biol. 2014 Apr;40(4):695-703. doi: 10.1016/j.ultrasmedbio.2013.09.033. Epub 2014 Jan 13.
3
A new method for shear wave speed estimation in shear wave elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Dec;62(12):2106-14. doi: 10.1109/TUFFC.2015.007282.
4
Physical models of tissue in shear fields.
Ultrasound Med Biol. 2014 Apr;40(4):655-74. doi: 10.1016/j.ultrasmedbio.2013.11.001.
5
Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Apr;56(4):748-58. doi: 10.1109/TUFFC.2009.1097.
6
What do we know about shear wave dispersion in normal and steatotic livers?
Ultrasound Med Biol. 2015 May;41(5):1481-7. doi: 10.1016/j.ultrasmedbio.2015.01.002. Epub 2015 Feb 24.
7
Elasticity estimates from images of crawling waves generated by miniature surface sources.
Ultrasound Med Biol. 2014 Apr;40(4):685-94. doi: 10.1016/j.ultrasmedbio.2013.05.019. Epub 2013 Aug 22.
8
The influence of the boundary conditions on longitudinal wave propagation in a viscoelastic medium.
Phys Med Biol. 2009 Jul 7;54(13):3997-4017. doi: 10.1088/0031-9155/54/13/004. Epub 2009 Jun 5.
9
Shear wave arrival time estimates correlate with local speckle pattern.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Dec;62(12):2054-67. doi: 10.1109/TUFFC.2015.007171.
10
Measurement of quantitative viscoelasticity of bovine corneas based on lamb wave dispersion properties.
Ultrasound Med Biol. 2015 May;41(5):1461-72. doi: 10.1016/j.ultrasmedbio.2014.12.017. Epub 2015 Jan 28.

引用本文的文献

1
Wave-based optical coherence elastography: The 10-year perspective.
Prog Biomed Eng (Bristol). 2022 Jan;4(1). doi: 10.1088/2516-1091/ac4512. Epub 2022 Jan 14.
3
Shear wave propagation in viscoelastic media: validation of an approximate forward model.
Phys Med Biol. 2019 Jan 8;64(2):025008. doi: 10.1088/1361-6560/aaf59a.
4
Plane-Wave Imaging Improves Single-Track Location Shear Wave Elasticity Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Aug;65(8):1402-1414. doi: 10.1109/TUFFC.2018.2842468. Epub 2018 Jun 1.
5
Characterization of Viscoelastic Materials Using Group Shear Wave Speeds.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 May;65(5):780-794. doi: 10.1109/TUFFC.2018.2815505.
6
Improving Displacement Signal-to-Noise Ratio for Low-Signal Radiation Force Elasticity Imaging Using Bayesian Techniques.
Ultrasound Med Biol. 2016 Aug;42(8):1986-97. doi: 10.1016/j.ultrasmedbio.2016.03.004. Epub 2016 May 4.

本文引用的文献

1
Model-based elastography: a survey of approaches to the inverse elasticity problem.
Phys Med Biol. 2012 Feb 7;57(3):R35-73. doi: 10.1088/0031-9155/57/3/R35. Epub 2012 Jan 6.
2
Integration of crawling waves in an ultrasound imaging system. Part 2: signal processing and applications.
Ultrasound Med Biol. 2012 Feb;38(2):312-23. doi: 10.1016/j.ultrasmedbio.2011.10.014. Epub 2011 Dec 16.
3
Integration of crawling waves in an ultrasound imaging system. Part 1: system and design considerations.
Ultrasound Med Biol. 2012 Feb;38(2):296-311. doi: 10.1016/j.ultrasmedbio.2011.10.026. Epub 2011 Dec 16.
4
Shear wave dispersion measures liver steatosis.
Ultrasound Med Biol. 2012 Feb;38(2):175-82. doi: 10.1016/j.ultrasmedbio.2011.10.019. Epub 2011 Dec 16.
5
Imaging the elastic properties of tissue: the 20 year perspective.
Phys Med Biol. 2011 Jan 7;56(1):R1-R29. doi: 10.1088/0031-9155/56/1/R01. Epub 2010 Nov 30.
6
Propagation of shear waves generated by a modulated finite amplitude radiation force in a viscoelastic medium.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):575-88. doi: 10.1109/TUFFC.2009.1074.
7
Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Apr;56(4):748-58. doi: 10.1109/TUFFC.2009.1097.
8
Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component.
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Feb;55(2):343-58. doi: 10.1109/TUFFC.2008.653.
9
Congruence of imaging estimators and mechanical measurements of viscoelastic properties of soft tissues.
Ultrasound Med Biol. 2007 Oct;33(10):1617-31. doi: 10.1016/j.ultrasmedbio.2007.04.012. Epub 2007 Jul 2.
10
Acoustic radiation force impulse imaging of myocardial radiofrequency ablation: initial in vivo results.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Apr;52(4):631-41. doi: 10.1109/tuffc.2005.1428046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验