Suppr超能文献

机械激发的空间定位会影响声辐射力光学相干弹性成像中的空间分辨率、对比度和对比噪声比。

Spatial localization of mechanical excitation affects spatial resolution, contrast, and contrast-to-noise ratio in acoustic radiation force optical coherence elastography.

作者信息

Leartprapun Nichaluk, Iyer Rishyashring R, Mackey Colin D, Adie Steven G

机构信息

Cornell University, Meinig School of Biomedical Engineering, Weill Hall, Ithaca, New York 14853, USA.

Present address: University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois 61801, USA.

出版信息

Biomed Opt Express. 2019 Oct 24;10(11):5877-5904. doi: 10.1364/BOE.10.005877. eCollection 2019 Nov 1.

Abstract

The notion that a spatially confined mechanical excitation would produce an elastogram with high spatial resolution has motivated the development of various elastography techniques with localized mechanical excitation. However, a quantitative investigation of the effects of spatial localization of mechanical excitation on the spatial resolution of elastograms is still lacking in optical coherence elastography (OCE). Here, we experimentally investigated the effect of spatial localization of acoustic radiation force (ARF) excitation on spatial resolution, contrast, and contrast-to-noise ratio (CNR) of dynamic uniaxial strain elastograms in dynamic ARF-OCE, based on a framework for analyzing the factors that influence the quality of the elastogram at different stages of the elastography workflow. Our results show that localized ARF excitation with a smaller acoustic focal spot size produced a strain elastogram with superior spatial resolution, contrast, and CNR. Our results also suggest that the spatial extent spanned by the displacement response in the sample may connect between the spatial localization of the mechanical excitation and the resulting elastogram quality. The elastography framework and experimental approach presented here may provide a basis for the quantitative analysis of elastogram quality in OCE that can be adapted and applied to different OCE systems and applications.

摘要

空间受限的机械激励会产生具有高空间分辨率的弹性图这一概念,推动了各种具有局部机械激励的弹性成像技术的发展。然而,在光学相干弹性成像(OCE)中,仍缺乏对机械激励的空间定位对弹性图空间分辨率影响的定量研究。在此,我们基于一个用于分析在弹性成像工作流程不同阶段影响弹性图质量的因素的框架,通过实验研究了声辐射力(ARF)激励的空间定位对动态ARF - OCE中动态单轴应变弹性图的空间分辨率、对比度和对比噪声比(CNR)的影响。我们的结果表明,具有较小声学焦斑尺寸的局部ARF激励产生了具有卓越空间分辨率、对比度和CNR的应变弹性图。我们的结果还表明,样品中位移响应所跨越的空间范围可能将机械激励的空间定位与所得弹性图质量联系起来。本文提出的弹性成像框架和实验方法可为OCE中弹性图质量的定量分析提供基础,该分析可适用于不同的OCE系统和应用。

相似文献

2
Analysis of image formation in optical coherence elastography using a multiphysics approach.
Biomed Opt Express. 2014 Aug 1;5(9):2913-30. doi: 10.1364/BOE.5.002913. eCollection 2014 Sep 1.
3
Analysis of mechanical contrast in optical coherence elastography.
J Biomed Opt. 2013 Dec;18(12):121508. doi: 10.1117/1.JBO.18.12.121508.
4
Acoustic radiation force optical coherence elastography for elasticity assessment of soft tissues.
Appl Spectrosc Rev. 2019;54(6):457-481. doi: 10.1080/05704928.2018.1467436. Epub 2018 Jun 25.
5
Acoustic Radiation Force Optical Coherence Elastography of Corneal Tissue.
IEEE J Sel Top Quantum Electron. 2016 May-Jun;22(3). doi: 10.1109/JSTQE.2016.2524618. Epub 2016 Feb 8.
6
Optical coherence elastography and its applications for the biomechanical characterization of tissues.
J Biophotonics. 2023 Dec;16(12):e202300292. doi: 10.1002/jbio.202300292. Epub 2023 Oct 9.
7
Optical coherence elastography: current status and future applications.
J Biomed Opt. 2011 Apr;16(4):043001. doi: 10.1117/1.3560294.
8
Phase-resolved acoustic radiation force optical coherence elastography.
J Biomed Opt. 2012 Nov;17(11):110505. doi: 10.1117/1.JBO.17.11.110505.
9
Analysis of spatial resolution in phase-sensitive compression optical coherence elastography.
Biomed Opt Express. 2019 Feb 28;10(3):1496-1513. doi: 10.1364/BOE.10.001496. eCollection 2019 Mar 1.

引用本文的文献

1
Nanobomb optical coherence elastography in multilayered phantoms.
Biomed Opt Express. 2023 Oct 10;14(11):5670-5681. doi: 10.1364/BOE.502576. eCollection 2023 Nov 1.
2
Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited].
Biomed Opt Express. 2022 Dec 16;14(1):208-248. doi: 10.1364/BOE.468932. eCollection 2023 Jan 1.
4
Analysis of strain estimation methods in phase-sensitive compression optical coherence elastography.
Biomed Opt Express. 2022 Mar 18;13(4):2224-2246. doi: 10.1364/BOE.447340. eCollection 2022 Apr 1.
5
Introduction to optical coherence elastography: tutorial.
J Opt Soc Am A Opt Image Sci Vis. 2022 Mar 1;39(3):418-430. doi: 10.1364/JOSAA.444808.
6
Analysis of sensitivity in quantitative micro-elastography.
Biomed Opt Express. 2021 Mar 1;12(3):1725-1745. doi: 10.1364/BOE.417829.

本文引用的文献

1
Analysis of spatial resolution in phase-sensitive compression optical coherence elastography.
Biomed Opt Express. 2019 Feb 28;10(3):1496-1513. doi: 10.1364/BOE.10.001496. eCollection 2019 Mar 1.
2
Interferometric detection of 3D motion using computational subapertures in optical coherence tomography.
Opt Express. 2018 Jul 23;26(15):18803-18816. doi: 10.1364/OE.26.018803.
3
Photonic force optical coherence elastography for three-dimensional mechanical microscopy.
Nat Commun. 2018 May 25;9(1):2079. doi: 10.1038/s41467-018-04357-8.
4
Characterization of Viscoelastic Materials Using Group Shear Wave Speeds.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 May;65(5):780-794. doi: 10.1109/TUFFC.2018.2815505.
5
Nanobomb optical coherence elastography.
Opt Lett. 2018 May 1;43(9):2006-2009. doi: 10.1364/OL.43.002006.
6
Wide-field quantitative micro-elastography of human breast tissue.
Biomed Opt Express. 2018 Feb 9;9(3):1082-1096. doi: 10.1364/BOE.9.001082. eCollection 2018 Mar 1.
8
Multi-functional Ultrasonic Micro-elastography Imaging System.
Sci Rep. 2017 Apr 27;7(1):1230. doi: 10.1038/s41598-017-01210-8.
9
Ultrasound Elastography: Review of Techniques and Clinical Applications.
Theranostics. 2017 Mar 7;7(5):1303-1329. doi: 10.7150/thno.18650. eCollection 2017.
10
Comparative study of shear wave-based elastography techniques in optical coherence tomography.
J Biomed Opt. 2017 Mar 1;22(3):35010. doi: 10.1117/1.JBO.22.3.035010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验