Suppr超能文献

在晚期前列腺癌中,驱动蛋白家族成员3A(KIF3a)通过Wnt信号通路促进细胞增殖和侵袭。

KIF3a promotes proliferation and invasion via Wnt signaling in advanced prostate cancer.

作者信息

Liu Zun, Rebowe Ryan E, Wang Zemin, Li Yingchun, Wang Zehua, DePaolo John S, Guo Jianhui, Qian Chiping, Liu Wanguo

机构信息

Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, LCRC building Room 904, 1700 Tulane Avenue, New Orleans, LA 70112.

出版信息

Mol Cancer Res. 2014 Apr;12(4):491-503. doi: 10.1158/1541-7786.MCR-13-0418. Epub 2014 Jan 10.

Abstract

UNLABELLED

Aberrant activation of the Wnt/β-catenin signaling pathway is a critical event in advanced prostate cancer, but the genetic alterations that activate the Wnt signaling pathway in many other cancers are rarely observed in prostate cancer. Other molecular mechanisms that regulate the Wnt signaling pathway in prostate cancer remain to be identified. Here, it is demonstrated that KIF3a, a subunit of kinesin-II motor protein, functions as an agonist of the Wnt signaling pathway in prostate cancer. KIF3a is upregulated in the majority of human prostate cancer cell lines and primary tumor biopsies. The expression levels of KIF3a correlate with a higher Gleason score, tumor-node-metastasis stage, and metastatic status of prostate cancer. Moreover, exogenous expression of KIF3a promoted cell growth in the benign prostate cells, whereas silencing KIF3a in cancer cells decreased cell proliferation, anchorage-independent cell growth, and cell migration/invasion. Mechanistically, KIF3a increases CK1-dependent DVL2 phosphorylation and β-catenin activation in prostate cancer cells, leading to transactivation of the Wnt-signaling target genes such as cyclin D1, HEF1, and MMP9. These findings support the notion that upregulation of KIF3a is causal of aberrant activation of Wnt signaling in advanced prostate cancer through the KIF3a-DVL2-β-catenin axis.

IMPLICATIONS

Inactivation of KIF3a may improve survival of patients with advanced prostate cancer in which Wnt signaling is activated.

摘要

未标记

Wnt/β-连环蛋白信号通路的异常激活是晚期前列腺癌中的关键事件,但在许多其他癌症中激活Wnt信号通路的基因改变在前列腺癌中很少见。调节前列腺癌中Wnt信号通路的其他分子机制仍有待确定。在此,研究表明驱动蛋白-II运动蛋白的一个亚基KIF3a在前列腺癌中作为Wnt信号通路的激动剂发挥作用。KIF3a在大多数人前列腺癌细胞系和原发性肿瘤活检中上调。KIF3a的表达水平与前列腺癌更高的Gleason评分、肿瘤-淋巴结-转移分期及转移状态相关。此外,KIF3a的外源性表达促进良性前列腺细胞的生长,而在癌细胞中沉默KIF3a则降低细胞增殖、非锚定依赖性细胞生长以及细胞迁移/侵袭。从机制上讲,KIF3a增加前列腺癌细胞中CK1依赖的DVL2磷酸化和β-连环蛋白激活,导致Wnt信号靶基因如细胞周期蛋白D1、HEF1和MMP9的反式激活。这些发现支持这样一种观点,即KIF3a的上调通过KIF3a-DVL2-β-连环蛋白轴导致晚期前列腺癌中Wnt信号的异常激活。

启示

KIF3a的失活可能改善Wnt信号激活的晚期前列腺癌患者的生存率。

相似文献

1
KIF3a promotes proliferation and invasion via Wnt signaling in advanced prostate cancer.
Mol Cancer Res. 2014 Apr;12(4):491-503. doi: 10.1158/1541-7786.MCR-13-0418. Epub 2014 Jan 10.
2
Insulin receptor substrate 1/2 (IRS1/2) regulates Wnt/β-catenin signaling through blocking autophagic degradation of dishevelled2.
J Biol Chem. 2014 Apr 18;289(16):11230-11241. doi: 10.1074/jbc.M113.544999. Epub 2014 Mar 10.
3
Upregulated PFTK1 promotes tumor cell proliferation, migration, and invasion in breast cancer.
Med Oncol. 2015 Jul;32(7):195. doi: 10.1007/s12032-015-0641-8. Epub 2015 Jun 2.
5
HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression.
Oncogene. 2011 Jun 9;30(23):2633-43. doi: 10.1038/onc.2010.632. Epub 2011 Feb 14.
6
Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms.
Nat Cell Biol. 2008 Jan;10(1):70-6. doi: 10.1038/ncb1670. Epub 2007 Dec 16.
8
Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13150-13155. doi: 10.1073/pnas.1616336113. Epub 2016 Oct 31.
10
MiR-182 promotes prostate cancer progression through activating Wnt/β-catenin signal pathway.
Biomed Pharmacother. 2018 Mar;99:334-339. doi: 10.1016/j.biopha.2018.01.082.

引用本文的文献

1
KIF3C inhibits the progression and proliferation of colorectal cancer.
BMC Gastroenterol. 2025 Mar 12;25(1):165. doi: 10.1186/s12876-024-03489-0.
3
Structure, function, and research progress of primary cilia in reproductive physiology and reproductive diseases.
Front Cell Dev Biol. 2024 Jun 3;12:1418928. doi: 10.3389/fcell.2024.1418928. eCollection 2024.
5
Kinesin family member 3A induces related diseases via wingless-related integration site/β-catenin signaling pathway.
Sci Prog. 2023 Jan-Mar;106(1):368504221148340. doi: 10.1177/00368504221148340.
7
Emerging role of microtubule-associated proteins on cancer metastasis.
Front Pharmacol. 2022 Sep 14;13:935493. doi: 10.3389/fphar.2022.935493. eCollection 2022.
8
Comparative Pathobiology of Canine and Human Prostate Cancer: State of the Art and Future Directions.
Cancers (Basel). 2022 May 31;14(11):2727. doi: 10.3390/cancers14112727.
10
Discovery of a new candidate drug to overcome cabazitaxel-resistant gene signature in castration-resistant prostate cancer by in silico screening.
Prostate Cancer Prostatic Dis. 2023 Mar;26(1):59-66. doi: 10.1038/s41391-021-00426-0. Epub 2021 Sep 30.

本文引用的文献

2
Cancer statistics, 2013.
CA Cancer J Clin. 2013 Jan;63(1):11-30. doi: 10.3322/caac.21166. Epub 2013 Jan 17.
3
Prostate specific antigen best practice statement: 2009 update.
J Urol. 2013 Jan;189(1 Suppl):S2-S11. doi: 10.1016/j.juro.2012.11.014.
4
Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia.
J Cell Sci. 2012 Apr 15;125(Pt 8):1945-57. doi: 10.1242/jcs.095893. Epub 2012 Feb 22.
6
HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression.
Oncogene. 2011 Jun 9;30(23):2633-43. doi: 10.1038/onc.2010.632. Epub 2011 Feb 14.
8
HEF1 is a crucial mediator of the proliferative effects of prostaglandin E(2) on colon cancer cells.
Cancer Res. 2010 Jan 15;70(2):824-31. doi: 10.1158/0008-5472.CAN-09-2105. Epub 2010 Jan 12.
9
Gleason score and lethal prostate cancer: does 3 + 4 = 4 + 3?
J Clin Oncol. 2009 Jul 20;27(21):3459-64. doi: 10.1200/JCO.2008.20.4669. Epub 2009 May 11.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验