Zhou Quan, Zhao Zongbin, Wang Zhiyu, Dong Yanfeng, Wang Xuzhen, Gogotsi Yury, Qiu Jieshan
Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China.
Nanoscale. 2014 Feb 21;6(4):2286-91. doi: 10.1039/c3nr05423c. Epub 2014 Jan 13.
Transition metal oxide coupling with carbon is an effective method for improving electrical conductivity of battery electrodes and avoiding the degradation of their lithium storage capability due to large volume expansion/contraction and severe particle aggregation during the lithium insertion and desertion process. In our present work, we develop an effective approach to fabricate the nanocomposites of porous rod-shaped Fe3O4 anchored on reduced graphene oxide (Fe3O4/rGO) by controlling the in situ nucleation and growth of β-FeOOH onto the graphene oxide (β-FeOOH/GO) and followed by dielectric barrier discharge (DBD) hydrogen plasma treatment. Such well-designed hierarchical nanostructures are beneficial for maximum utilization of electrochemically active matter in lithium ion batteries and display superior Li uptake with high reversible capacity, good rate capability, and excellent stability, maintaining 890 mA h g(-1) capacity over 100 cycles at a current density of 500 mA g(-1).
过渡金属氧化物与碳耦合是提高电池电极电导率的有效方法,可避免在锂嵌入和脱嵌过程中因体积大幅膨胀/收缩以及严重的颗粒团聚而导致其储锂能力下降。在我们目前的工作中,我们开发了一种有效的方法,通过控制β-FeOOH在氧化石墨烯(β-FeOOH/GO)上的原位成核和生长,随后进行介质阻挡放电(DBD)氢等离子体处理,来制备锚定在还原氧化石墨烯上的多孔棒状Fe3O4纳米复合材料(Fe3O4/rGO)。这种精心设计的分级纳米结构有利于锂离子电池中电化学活性物质的最大程度利用,并显示出优异的锂吸收性能,具有高可逆容量、良好的倍率性能和出色的稳定性,在500 mA g(-1)的电流密度下100次循环后仍保持890 mA h g(-1)的容量。