Suppr超能文献

心力衰竭中的肌肉氧输送和利用:对运动(耐)受性的影响。

Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.

机构信息

Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, KS 66506-5802, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1050-63. doi: 10.1152/ajpheart.00943.2011. Epub 2011 Nov 18.

Abstract

The defining characteristic of chronic heart failure (CHF) is an exercise intolerance that is inextricably linked to structural and functional aberrations in the O(2) transport pathway. CHF reduces muscle O(2) supply while simultaneously increasing O(2) demands. CHF severity varies from moderate to severe and is assessed commonly in terms of the maximum O(2) uptake, which relates closely to patient morbidity and mortality in CHF and forms the basis for Weber and colleagues' (167) classifications of heart failure, speed of the O(2) uptake kinetics following exercise onset and during recovery, and the capacity to perform submaximal exercise. As the heart fails, cardiovascular regulation shifts from controlling cardiac output as a means for supplying the oxidative energetic needs of exercising skeletal muscle and other organs to preventing catastrophic swings in blood pressure. This shift is mediated by a complex array of events that include altered reflex and humoral control of the circulation, required to prevent the skeletal muscle "sleeping giant" from outstripping the pathologically limited cardiac output and secondarily impacts lung (and respiratory muscle), vascular, and locomotory muscle function. Recently, interest has also focused on the dysregulation of inflammatory mediators including tumor necrosis factor-α and interleukin-1β as well as reactive oxygen species as mediators of systemic and muscle dysfunction. This brief review focuses on skeletal muscle to address the mechanistic bases for the reduced maximum O(2) uptake, slowed O(2) uptake kinetics, and exercise intolerance in CHF. Experimental evidence in humans and animal models of CHF unveils the microvascular cause(s) and consequences of the O(2) supply (decreased)/O(2) demand (increased) imbalance emblematic of CHF. Therapeutic strategies to improve muscle microvascular and oxidative function (e.g., exercise training and anti-inflammatory, antioxidant strategies, in particular) and hence patient exercise tolerance and quality of life are presented within their appropriate context of the O(2) transport pathway.

摘要

慢性心力衰竭(CHF)的一个定义特征是运动不耐受,这与 O(2) 运输途径的结构和功能异常密切相关。CHF 会降低肌肉的 O(2) 供应,同时增加 O(2) 的需求。CHF 的严重程度从中度到重度不等,通常根据最大 O(2)摄取量来评估,这与 CHF 患者的发病率和死亡率密切相关,也是 Weber 及其同事(167)对心力衰竭的分类、运动起始后和恢复期间 O(2)摄取动力学的速度以及进行亚最大运动的能力的基础。随着心脏衰竭,心血管调节从控制心输出量以满足运动骨骼肌和其他器官的氧化能量需求转变为防止血压灾难性波动。这种转变是由一系列复杂的事件介导的,包括循环反射和体液控制的改变,以防止骨骼肌“沉睡巨人”超过病理性有限的心输出量,并随后影响肺(和呼吸肌)、血管和运动肌的功能。最近,人们还关注炎症介质(包括肿瘤坏死因子-α和白细胞介素-1β)以及活性氧作为全身和肌肉功能障碍的介质的失调。这篇简短的综述主要关注骨骼肌,以解决 CHF 中最大 O(2)摄取量减少、O(2)摄取动力学减慢和运动不耐受的机制基础。CHF 人类和动物模型中的实验证据揭示了 O(2)供应(减少)/O(2)需求(增加)失衡的微血管原因和后果,这是 CHF 的特征。改善肌肉微血管和氧化功能(例如,运动训练和抗炎、抗氧化策略,特别是)的治疗策略,以及因此改善患者的运动耐量和生活质量,将在 O(2) 运输途径的适当背景下呈现。

相似文献

1
Muscle oxygen transport and utilization in heart failure: implications for exercise (in)tolerance.
Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1050-63. doi: 10.1152/ajpheart.00943.2011. Epub 2011 Nov 18.
2
Physical exercise training interventions for children and young adults during and after treatment for childhood cancer.
Cochrane Database Syst Rev. 2016 Mar 31;3(3):CD008796. doi: 10.1002/14651858.CD008796.pub3.
4
Identifying the Mechanisms of a Peripherally Limited Exercise Phenotype in Patients With Heart Failure With Preserved Ejection Fraction.
Circ Heart Fail. 2024 Aug;17(8):e011693. doi: 10.1161/CIRCHEARTFAILURE.123.011693. Epub 2024 Jul 25.
6
Interventions for promoting habitual exercise in people living with and beyond cancer.
Cochrane Database Syst Rev. 2018 Sep 19;9(9):CD010192. doi: 10.1002/14651858.CD010192.pub3.
8
[Guidelines for the prevention and management of bronchial asthma (2024 edition)].
Zhonghua Jie He He Hu Xi Za Zhi. 2025 Mar 12;48(3):208-248. doi: 10.3760/cma.j.cn112147-20241013-00601.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
10
Physical exercise training interventions for children and young adults during and after treatment for childhood cancer.
Cochrane Database Syst Rev. 2013 Apr 30(4):CD008796. doi: 10.1002/14651858.CD008796.pub2.

引用本文的文献

3
Determinants of cardiac output in health and heart failure.
Exp Physiol. 2025 May;110(5):637-648. doi: 10.1113/EP091505. Epub 2025 Mar 23.
5
The 5-HT7 receptor contributes to increased hindquarter blood flow caused by skeletal muscle contraction.
J Cardiovasc Pharmacol. 2025 Feb 28. doi: 10.1097/FJC.0000000000001688.
6
Six-minute walk test reveals delayed oxygen uptake kinetics in ischemic cardiomyopathy.
Braz J Med Biol Res. 2025 Feb 3;58:e14276. doi: 10.1590/1414-431X2024e14276. eCollection 2025.
7
SMOC2, OGN, FCN3, and SERPINA3 could be biomarkers for the evaluation of acute decompensated heart failure caused by venous congestion.
Front Cardiovasc Med. 2024 Dec 9;11:1406662. doi: 10.3389/fcvm.2024.1406662. eCollection 2024.
9
Computer model coupling hemodynamics and oxygen transport in the coronary capillary network: Pulsatile vs. non-pulsatile analysis.
Comput Methods Programs Biomed. 2025 Jan;258:108486. doi: 10.1016/j.cmpb.2024.108486. Epub 2024 Nov 8.

本文引用的文献

1
Oxygen uptake kinetics.
Compr Physiol. 2012 Apr;2(2):933-96. doi: 10.1002/cphy.c100072.
2
Exercise: Kinetic considerations for gas exchange.
Compr Physiol. 2011 Jan;1(1):203-44. doi: 10.1002/cphy.c090010.
3
Exercise training improves neurovascular control and functional capacity in heart failure patients regardless of age.
Eur J Prev Cardiol. 2012 Aug;19(4):822-9. doi: 10.1177/1741826711414626. Epub 2011 Jun 22.
4
Slow component of VO2 kinetics: mechanistic bases and practical applications.
Med Sci Sports Exerc. 2011 Nov;43(11):2046-62. doi: 10.1249/MSS.0b013e31821fcfc1.
5
Current concepts underlying benefits of exercise training in congestive heart failure patients.
Curr Cardiol Rev. 2010 May;6(2):104-11. doi: 10.2174/157340310791162640.
6
Acute dietary nitrate supplementation improves cycling time trial performance.
Med Sci Sports Exerc. 2011 Jun;43(6):1125-31. doi: 10.1249/MSS.0b013e31821597b4.
7
Exercise intolerance in chronic heart failure: mechanisms and therapies. Part I.
Eur J Cardiovasc Prev Rehabil. 2010 Dec;17(6):637-42. doi: 10.1097/HJR.0b013e3283361dc5.
8
Exercise intolerance in chronic heart failure: mechanisms and therapies. Part II.
Eur J Cardiovasc Prev Rehabil. 2010 Dec;17(6):643-8. doi: 10.1097/HJR.0b013e32833f3aa5.
9
Dynamics of muscle microcirculatory and blood-myocyte O(2) flux during contractions.
Acta Physiol (Oxf). 2011 Jul;202(3):293-310. doi: 10.1111/j.1748-1716.2010.02246.x. Epub 2011 Mar 1.
10
Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out sprint exercise.
Am J Physiol Regul Integr Comp Physiol. 2011 Mar;300(3):R700-7. doi: 10.1152/ajpregu.00761.2010. Epub 2010 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验