Suppr超能文献

嗜热微生物的代谢。

Metabolism of hyperthermophiles.

机构信息

, .

出版信息

World J Microbiol Biotechnol. 1995 Jan;11(1):26-57. doi: 10.1007/BF00339135.

Abstract

Hyperthermophiles are characterized by a temperature optimum for growth between 80 and 110°C. They are considered to represent the most ancient phenotype of living organisms and thus their metabolic design might reflect the situation at an early stage of evolution. Their modes of metabolism are diverse and include chemolithoautotrophic and chemoorganoheterotrophic. No extant phototrophic hyperthermophiles are known. Lithotrophic energy metabolism is mostly anaerobic or microaerophilic and based on the oxidation of H2 or S coupled to the reduction of S, SO inf4 (sup2-) , CO2 and NO inf3 (sup-) but rarely to O2. the substrates are derived from volcanic activities in hyperthermophilic habitats. The lithotrophic energy metabolism of hyperthermophiles appears to be similar to that of mesophiles. Autotrophic CO2 fixation proceeds via the reductive citric acid cycle, considered to be one of the first metabolic cycles, and via the reductive acetyl-CoA/carbon monoxide dehydrogenase pathway. The Calvin cycle has not been found in hyperthermophiles (or any Archaea). Organotrophic metabolism mainly involves peptides and sugars as substrates, which are either oxidized to CO2 by external electron acceptors or fermented to acetate and other products. Sugar catabolism in hyperthermophiles involves non-phosphorylated versions of the Entner-Doudoroff pathway and modified versions of the Embden-Meyerhof pathway. The 'classical' Embden-Meyerhof pathway is present in hyperthermophilic Bacteria (Thermotoga) but not in Archaea. All hyperthermophiles (and Archaea) tested so far utilize pyruvate:ferredoxin oxidoreductase for acetyl-CoA formation from pyruvate. Acetyl-CoA oxidation in anaerobic sulphur-reducing and aerobic hyperthermophiles proceeds via the citric acid cycle; in the hyperthermophilic sulphate-reducer Archaeoglobus an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway is operative. Acetate formation from acetyl-CoA in Archaea, including hyperthermophiles, is catalysed by acetyl-CoA synthetase (ADP-forming), a novel prokarvotic enzyme involved in energy conservation. In Bacteria, including the hyperthermophile Thermotoga, acetyl-CoA conversion to acetate involves two enzymes, phosphate acetyltransferase and acetate kinase.

摘要

嗜热菌的最适生长温度在 80 到 110°C 之间。它们被认为代表了最古老的生物表型,因此它们的代谢设计可能反映了进化早期的情况。它们的代谢方式多种多样,包括化能自养和化能异养。目前还没有已知的光合嗜热菌。自养型能量代谢大多是厌氧或微需氧的,基于 H2 或 S 的氧化与 S、SO₄²⁻、CO2 和 NO₃⁻的还原偶联,但很少与 O2 偶联。这些底物来自嗜热栖息地的火山活动。嗜热菌的自养型能量代谢似乎与中温菌相似。通过还原性柠檬酸循环和还原性乙酰辅酶 A/一氧化碳脱氢酶途径进行自养型 CO2 固定,该途径被认为是最早的代谢途径之一。在嗜热菌(或任何古菌)中尚未发现卡尔文循环。有机营养代谢主要涉及肽和糖作为底物,这些底物要么被外部电子受体氧化为 CO2,要么发酵为乙酸和其他产物。嗜热菌的糖分解代谢涉及非磷酸化的 Entner-Doudoroff 途径和经修饰的 Embden-Meyerhof 途径。“经典”的 Embden-Meyerhof 途径存在于嗜热菌(Thermotoga)中,但不存在于古菌中。迄今为止,所有测试的嗜热菌(和古菌)都利用丙酮酸:铁氧还蛋白氧化还原酶从丙酮酸形成乙酰辅酶 A。在厌氧硫酸盐还原和需氧嗜热菌中,乙酰辅酶 A 的氧化通过柠檬酸循环进行;在嗜热硫酸盐还原古菌 Archaeoglobus 中,存在一种氧化乙酰辅酶 A/一氧化碳脱氢酶途径。古菌(包括嗜热菌)中乙酰辅酶 A 形成乙酸盐的过程由乙酰辅酶 A 合成酶(ADP 形成)催化,这是一种涉及能量守恒的新型原核酶。在包括嗜热菌 Thermotoga 的细菌中,乙酰辅酶 A 转化为乙酸盐涉及两种酶,磷酸乙酰转移酶和乙酸激酶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验