Max-Volmer-Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 1 Berlin 12, Germany.
Photosynth Res. 1991 Feb;27(2):97-108. doi: 10.1007/BF00033249.
Photoinhibition was analyzed in O2-evolving and in Tris-treated PS II membrane fragments by measuring flash-induced absorption changes at 830 nm reflecting the transient P680(+) formation and oxygen evolution. Irradiation by visible light affects the PS II electron transfer at two different sites: a) photoinhibition of site I eliminates the capability to perform a 'stable' charge separation between P680(+) and QA (-) within the reaction center (RC) and b) photoinhibition of site II blocks the electron transfer from YZ to P680(+). The quantum yield of site I photoinhibition (2-3×10(-7) inhibited RC/quantum) is independent of the functional integrity of the water oxidizing system. In contrast, the quantum yield of photoinhibition at site II depends strongly on the oxygen evolution capacity. In O2-evolving samples, the quantum yield of site II photoinhibition is about 10(-7) inhibited RC/quantum. After selective elimination of the O2-evolving capacity by Tris-treatment, the quantum yield of photoinhibition at site II depends on the light intensity. At low intensity (<3 W/m(2)), the quantum yield is 10(-4) inhibited RC/quantum (about 1000 times higher than in oxygen evolving samples). Based on these results it is inferred that the dominating deleterious effect of photoinhibition cannot be ascribed to an unique target site or a single mechanism because it depends on different experimental conditions (e.g., light intensity) and the functional status of the PS II complex.
通过测量在 830nm 处反映瞬时光合作用中 P680(+)形成和氧气释放的光诱导吸收变化,分析放氧和 Tris 处理的 PS II 膜片段中的光抑制。可见光照射会在两个不同的位点影响 PS II 电子转移:a)位点 I 的光抑制消除了在反应中心(RC)内 P680(+)和 QA(-)之间进行“稳定”电荷分离的能力;b)位点 II 的光抑制阻止了电子从 YZ 向 P680(+)的转移。位点 I 光抑制的量子产率(2-3×10(-7)抑制 RC/量子)与水氧化系统的功能完整性无关。相比之下,位点 II 光抑制的量子产率强烈依赖于氧气释放能力。在放氧样品中,位点 II 光抑制的量子产率约为 10(-7)抑制 RC/量子。在通过 Tris 处理选择性消除放氧能力后,位点 II 光抑制的量子产率取决于光强度。在低强度(<3 W/m(2))下,量子产率为 10(-4)抑制 RC/量子(比放氧样品高约 1000 倍)。基于这些结果,可以推断光抑制的主要有害影响不能归因于唯一的靶位或单一机制,因为它取决于不同的实验条件(例如,光强度)和 PS II 复合物的功能状态。