Division of Molecular Plant Biology, University of California, 313 Hilgard Hall, 94720, Berkley, CA, USA.
Photosynth Res. 1986 Jan;9(1-2):79-88. doi: 10.1007/BF00029734.
Photoinhibition of photosynthesis is manifested at the level of the leaf as a loss of CO2 fixation and at the level of the chloroplast thylakoid membrane as a loss of photosystem II electron-transport capacity. At the photosystem II level, photoinhibition is manifested by a lowered chlorophyll a variable fluorescence yield, by a lowered amplitude of the light-induced absorbance change at 320 nm (ΔA320) and 540-minus-550 nm (ΔA540-550), attributed to inhibition of the photoreduction of the primary plastoquinone QA molecule. A correlation of the kinetics of variable fluorescence yield loss with the inhibition of QA photoreduction suggested that photoinhibited reaction centers are incapable of generating a stable charge separation but are highly efficient in the trapping and non-photochemical dissipation of absorbed light. The direct effect of photoinhibition on primary photochemical parameters of photosystem II suggested a permanent reaction center modification the nature of which remains to be determined.
光合作用的光抑制表现在叶片水平上为 CO2 固定的丧失,在叶绿体类囊体膜水平上为光系统 II 电子传递能力的丧失。在光系统 II 水平上,光抑制表现为叶绿素 a 可变荧光产量降低,320nm(ΔA320)和 540-550nm(ΔA540-550)处的光诱导吸收变化幅度降低,归因于原初质体醌 QA 分子的光还原抑制。可变荧光产量损失动力学与 QA 光还原抑制的相关性表明,光抑制的反应中心不能产生稳定的电荷分离,但在吸收光的捕获和非光化学耗散方面非常有效。光抑制对光系统 II 初级光化学参数的直接影响表明反应中心发生了永久性修饰,但其性质尚待确定。