Suppr超能文献

应用项目反应理论对家系数据中的多个表型及其联合遗传度进行建模。

Using item response theory to model multiple phenotypes and their joint heritability in family data.

机构信息

Department of Statistics, University of São Paulo, Brazil.

出版信息

Genet Epidemiol. 2014 Feb;38(2):152-61. doi: 10.1002/gepi.21784. Epub 2014 Jan 12.

Abstract

Many important complex diseases are composed of a series of phenotypes, which makes the disease diagnosis and its genetic dissection difficult. The standard procedures to determine heritability in such complex diseases are either applied for single phenotype analyses or to compare findings across phenotypes or multidimensional reduction procedures, such as principal components analysis using all phenotypes. However each method has its own problems and the challenges are even more complex for extended family data and categorical phenotypes. In this paper, we propose a methodology to determine a scale for complex outcomes involving multiple categorical phenotypes in extended pedigrees using item response theory (IRT) models that take all categorical phenotypes into account, allowing informative comparison among individuals. An advantage of the IRT framework is that a straightforward joint heritability parameter can be estimated for categorical phenotypes. Furthermore, our methodology allows many possible extensions such as the inclusion of covariates and multiple variance components. We use Markov Chain Monte Carlo algorithm for the parameter estimation and validate our method through simulated data. As an application we consider the metabolic syndrome as the multiple phenotype disease using data from the Baependi Heart Study consisting of 1,696 individuals in 95 families. We adjust IRT models without covariates and include age and age squared as covariates. The results showed that adjusting for covariates yields a higher joint heritability (ĥ2=0.53) than without co variates (ĥ2=0.21) indicating that the covariates absorbed some of the error variance.

摘要

许多重要的复杂疾病由一系列表型组成,这使得疾病诊断和遗传分析变得困难。在这种复杂疾病中确定遗传率的标准程序要么适用于单一表型分析,要么适用于跨表型或多维降维程序(如使用所有表型的主成分分析)比较发现。然而,每种方法都有其自身的问题,对于扩展家族数据和分类表型,挑战更加复杂。在本文中,我们提出了一种使用项目反应理论(IRT)模型确定涉及多个分类表型的复杂结果的量表的方法,该模型考虑了所有分类表型,允许对个体进行信息丰富的比较。IRT 框架的一个优点是可以为分类表型直接估计联合遗传率参数。此外,我们的方法允许许多可能的扩展,例如包括协变量和多个方差分量。我们使用马尔可夫链蒙特卡罗算法进行参数估计,并通过模拟数据验证我们的方法。作为应用,我们考虑使用来自巴伊恩迪心脏研究的数据将代谢综合征作为多表型疾病,该研究包括 95 个家庭的 1696 个人。我们调整了没有协变量的 IRT 模型,并包括年龄和年龄平方作为协变量。结果表明,调整协变量比不调整协变量(ĥ2=0.21)得出更高的联合遗传率(ĥ2=0.53),这表明协变量吸收了一些误差方差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验