Suppr超能文献

向量扩散映射与连接拉普拉斯算子。

Vector Diffusion Maps and the Connection Laplacian.

作者信息

Singer A, Wu H-T

机构信息

Princeton University, Dedicated to the memory of Partha Niyogi, Fine Hall, Washington Road, Princeton, N.J. 08544-1000,

出版信息

Commun Pure Appl Math. 2012 Aug;65(8). doi: 10.1002/cpa.21395.

Abstract

We introduce (VDM), a new mathematical framework for organizing and analyzing massive high-dimensional data sets, images, and shapes. VDM is a mathematical and algorithmic generalization of diffusion maps and other nonlinear dimensionality reduction methods, such as LLE, ISOMAP, and Laplacian eigenmaps. While existing methods are either directly or indirectly related to the heat kernel for functions over the data, VDM is based on the heat kernel for vector fields. VDM provides tools for organizing complex data sets, embedding them in a low-dimensional space, and interpolating and regressing vector fields over the data. In particular, it equips the data with a metric, which we refer to as the . In the manifold learning setup, where the data set is distributed on a low-dimensional manifold ℳ embedded in ℝ , we prove the relation between VDM and the connection Laplacian operator for vector fields over the manifold.

摘要

我们引入了(VDM),这是一种用于组织和分析海量高维数据集、图像及形状的新数学框架。VDM是扩散映射以及其他非线性降维方法(如局部线性嵌入(LLE)、等距映射(ISOMAP)和拉普拉斯特征映射)在数学和算法上的推广。虽然现有方法要么直接要么间接与数据上函数的热核相关,但VDM基于向量场的热核。VDM提供了用于组织复杂数据集、将它们嵌入低维空间以及对数据上的向量场进行插值和回归的工具。特别地,它为数据配备了一种度量,我们将其称为 。在流形学习设置中,数据集分布在嵌入于 的低维流形ℳ上,我们证明了VDM与流形上向量场的联络拉普拉斯算子之间的关系。

相似文献

1
Vector Diffusion Maps and the Connection Laplacian.
Commun Pure Appl Math. 2012 Aug;65(8). doi: 10.1002/cpa.21395.
3
A rotation based regularization method for semi-supervised learning.
Pattern Anal Appl. 2021;24(3):887-905. doi: 10.1007/s10044-020-00947-9. Epub 2021 Jan 4.
5
Orientability and Diffusion Maps.
Appl Comput Harmon Anal. 2011 Jul;31(1):44-58. doi: 10.1016/j.acha.2010.10.001.
6
Hessian eigenmaps: locally linear embedding techniques for high-dimensional data.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5591-6. doi: 10.1073/pnas.1031596100. Epub 2003 Apr 30.
7
EARTHMOVER-BASED MANIFOLD LEARNING FOR ANALYZING MOLECULAR CONFORMATION SPACES.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1715-1719. doi: 10.1109/isbi45749.2020.9098723. Epub 2020 May 22.
8
Robust dimensionality reduction via feature space to feature space distance metric learning.
Neural Netw. 2019 Apr;112:1-14. doi: 10.1016/j.neunet.2019.01.001. Epub 2019 Jan 21.
9
10
Laplacian embedded regression for scalable manifold regularization.
IEEE Trans Neural Netw Learn Syst. 2012 Jun;23(6):902-15. doi: 10.1109/TNNLS.2012.2190420.

引用本文的文献

1
Geometric Scattering on Measure Spaces.
Appl Comput Harmon Anal. 2024 May;70. doi: 10.1016/j.acha.2024.101635. Epub 2024 Feb 6.
2
The -invariant graph Laplacian Part I: Convergence rate and eigendecomposition.
Appl Comput Harmon Anal. 2024 Jul;71. doi: 10.1016/j.acha.2024.101637. Epub 2024 Feb 21.
3
The -invariant graph Laplacian part II: Diffusion maps.
Appl Comput Harmon Anal. 2024 Nov;73. doi: 10.1016/j.acha.2024.101695. Epub 2024 Aug 12.
4
MARBLE: interpretable representations of neural population dynamics using geometric deep learning.
Nat Methods. 2025 Mar;22(3):612-620. doi: 10.1038/s41592-024-02582-2. Epub 2025 Feb 17.
5
Enhancing NILM classification via robust principal component analysis dimension reduction.
Heliyon. 2024 May 7;10(9):e30607. doi: 10.1016/j.heliyon.2024.e30607. eCollection 2024 May 15.
6
Lizard Brain: Tackling Locally Low-Dimensional Yet Globally Complex Organization of Multi-Dimensional Datasets.
Front Neurorobot. 2020 Jan 9;13:110. doi: 10.3389/fnbot.2019.00110. eCollection 2019.
7
An Emergent Space for Distributed Data with Hidden Internal Order through Manifold Learning.
IEEE Access. 2018;6:77402-77413. doi: 10.1109/access.2018.2882777. Epub 2018 Nov 22.
8
MAHALANOBIS DISTANCE FOR CLASS AVERAGING OF CRYO-EM IMAGES.
Proc IEEE Int Symp Biomed Imaging. 2017 Apr;2017:654-658. doi: 10.1109/ISBI.2017.7950605. Epub 2017 Jun 19.
9
Temporal ordering and registration of images in studies of developmental dynamics.
Development. 2015 May 1;142(9):1717-24. doi: 10.1242/dev.119396. Epub 2015 Apr 1.
10
Rotationally invariant image representation for viewing direction classification in cryo-EM.
J Struct Biol. 2014 Apr;186(1):153-66. doi: 10.1016/j.jsb.2014.03.003. Epub 2014 Mar 12.

本文引用的文献

1
Sensor Network Localization by Eigenvector Synchronization Over the Euclidean Group.
ACM Trans Sens Netw. 2012 Jul;8(3). doi: 10.1145/2240092.2240093.
2
Representation Theoretic Patterns in Three-Dimensional Cryo-Electron Microscopy II-The Class Averaging Problem.
Found Comut Math. 2011 Oct 1;11(5):589-616. doi: 10.1007/s10208-011-9095-3. Epub 2011 May 4.
4
Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors.
SIAM J Imaging Sci. 2011 Jun 23;4(2):723-759. doi: 10.1137/090778390.
5
Least-squares fitting of two 3-d point sets.
IEEE Trans Pattern Anal Mach Intell. 1987 May;9(5):698-700. doi: 10.1109/tpami.1987.4767965.
6
Orientability and Diffusion Maps.
Appl Comput Harmon Anal. 2011 Jul;31(1):44-58. doi: 10.1016/j.acha.2010.10.001.
7
Angular Synchronization by Eigenvectors and Semidefinite Programming.
Appl Comput Harmon Anal. 2011 Jan 30;30(1):20-36. doi: 10.1016/j.acha.2010.02.001.
8
On Consistency and Sparsity for Principal Components Analysis in High Dimensions.
J Am Stat Assoc. 2009 Jun 1;104(486):682-693. doi: 10.1198/jasa.2009.0121.
9
Hessian eigenmaps: locally linear embedding techniques for high-dimensional data.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5591-6. doi: 10.1073/pnas.1031596100. Epub 2003 Apr 30.
10
Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction.
Ultramicroscopy. 1987;21(2):111-23. doi: 10.1016/0304-3991(87)90078-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验