Singer A, Wu H-T
Princeton University, Dedicated to the memory of Partha Niyogi, Fine Hall, Washington Road, Princeton, N.J. 08544-1000,
Commun Pure Appl Math. 2012 Aug;65(8). doi: 10.1002/cpa.21395.
We introduce (VDM), a new mathematical framework for organizing and analyzing massive high-dimensional data sets, images, and shapes. VDM is a mathematical and algorithmic generalization of diffusion maps and other nonlinear dimensionality reduction methods, such as LLE, ISOMAP, and Laplacian eigenmaps. While existing methods are either directly or indirectly related to the heat kernel for functions over the data, VDM is based on the heat kernel for vector fields. VDM provides tools for organizing complex data sets, embedding them in a low-dimensional space, and interpolating and regressing vector fields over the data. In particular, it equips the data with a metric, which we refer to as the . In the manifold learning setup, where the data set is distributed on a low-dimensional manifold ℳ embedded in ℝ , we prove the relation between VDM and the connection Laplacian operator for vector fields over the manifold.
我们引入了(VDM),这是一种用于组织和分析海量高维数据集、图像及形状的新数学框架。VDM是扩散映射以及其他非线性降维方法(如局部线性嵌入(LLE)、等距映射(ISOMAP)和拉普拉斯特征映射)在数学和算法上的推广。虽然现有方法要么直接要么间接与数据上函数的热核相关,但VDM基于向量场的热核。VDM提供了用于组织复杂数据集、将它们嵌入低维空间以及对数据上的向量场进行插值和回归的工具。特别地,它为数据配备了一种度量,我们将其称为 。在流形学习设置中,数据集分布在嵌入于 的低维流形ℳ上,我们证明了VDM与流形上向量场的联络拉普拉斯算子之间的关系。